JSON-Daten direkt im FastAPI-Backend veröffentlichen
Problembeschreibung:
Beim Arbeiten mit FastAPI Benutzer möchten möglicherweise JSON-Daten direkt im Backend veröffentlichen, ohne die Swagger-Benutzeroberfläche zur Dokumentation zu verwenden. Stattdessen zielen sie darauf ab, Daten über die angegebene URL zu übermitteln und das Ergebnis im Browser zu empfangen.
Lösung:
Um dies zu erreichen, werden JavaScript-Bibliotheken wie die Fetch-API verwendet eingesetzt werden kann. Diese Tools ermöglichen das Senden von JSON-formatierten Daten.
Für das Frontend-Rendering kann Jinja2Templates verwendet werden, um Vorlagen zurückzugeben, die HTML- und JavaScript-Code enthalten. Man kann JSON-Daten auch direkt veröffentlichen, wie in den Codebeispielen unten gezeigt.
app.py
<code class="python">from fastapi import FastAPI, Request from fastapi.templating import Jinja2Templates from pydantic import BaseModel app = FastAPI() templates = Jinja2Templates(directory="templates") class Item(BaseModel): name: str roll: int @app.post("/") async def create_item(item: Item): return item @app.get("/") async def index(request: Request): return templates.TemplateResponse("index.html", {"request": request})</code>
templates/index.html
<code class="html"> <h1 id="Post-JSON-Data">Post JSON Data</h1> <form method="post" id="myForm"> name : <input type="text" name="name" value="foo"> roll : <input type="number" name="roll" value="1"> <input type="button" value="Submit" onclick="submitForm()"> </form> <div id="responseArea"></div> <script> function submitForm() { var formElement = document.getElementById('myForm'); var data = new FormData(formElement); fetch('/', { method: 'POST', headers: { 'Accept': 'application/json', 'Content-Type': 'application/json' }, body: JSON.stringify(Object.fromEntries(data)) }) .then(resp => resp.text()) // or, resp.json(), etc. .then(data => { document.getElementById("responseArea").innerHTML = data; }) .catch(error => { console.error(error); }); } </script> </code>
Mit diesem Ansatz können Sie JSON-Daten direkt in Ihrem FastAPI-Backend veröffentlichen, ohne auf die Swagger-Benutzeroberfläche angewiesen zu sein. Die Daten können über ein Formular im Frontend übermittelt und von Ihrer Backend-API verarbeitet werden.
Das obige ist der detaillierte Inhalt vonWie poste ich JSON-Daten direkt an ein FastAPI-Backend?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Thedifferencebetweenaforloopandawhileloopinpythonisthataforloopisusedwhenthennumnofiterationssisknowninadvance, während

In Python eignen sich für Schleifen für Fälle, in denen die Anzahl der Iterationen bekannt ist, während Schleifen für Fälle geeignet sind, in denen die Anzahl der Iterationen unbekannt ist und mehr Kontrolle erforderlich ist. 1) Für Schleifen eignen sich zum Durchqueren von Sequenzen wie Listen, Zeichenfolgen usw. mit prägnantem und pythonischem Code. 2) Während Schleifen angemessener sind, wenn Sie die Schleife gemäß den Bedingungen steuern oder auf Benutzereingaben warten müssen, müssen Sie jedoch aufmerksam machen, um unendliche Schleifen zu vermeiden. 3) In Bezug auf die Leistung ist die für die Schleife etwas schneller, aber der Unterschied ist normalerweise nicht groß. Durch die Auswahl des richtigen Schleifentyps können Sie die Effizienz und Lesbarkeit Ihres Codes verbessern.

In Python können Listen mit fünf Methoden zusammengeführt werden: 1) Verwenden von Operatoren, die einfach und intuitiv sind, für kleine Listen geeignet sind; 2) Verwenden Sie die Extend () -Methode, um die ursprüngliche Liste direkt zu ändern, die für Listen geeignet sind, die häufig aktualisiert werden müssen. 3) Listenanalyseformeln verwenden, präzise und operativ für Elemente; 4) Verwenden Sie die Funktion iterertools.chain (), um den Speicher effizient zu machen, und für große Datensätze geeignet. 5) Verwenden Sie * Operatoren und Zip () -Funktion, um für Szenen geeignet zu sein, in denen Elemente gepaart werden müssen. Jede Methode hat ihre spezifischen Verwendungen und Vor- und Nachteile, und die Projektanforderungen und die Leistung sollten bei der Auswahl berücksichtigt werden.

Forloopsusedwhenthenumberofofiterationssisknown, whileleloopsusedUntilaconDitionisMet.1) Forloopsardealforsequenceslikelisten, usingSyntax -Like'forfruitinFruits: Print (Frucht) '. 2) WhileloopsuitableFoRuancnownitationCaperitationCountcounts, z. B., z. B., z

Toconcatenatealistoflistsinpython, usextend, listCompresions, itertools.chain, orrecursivefunctions.1) ExtendMethodisStraightforwardbutverbose.2) LISTCOMPRETRAUSIERUNGEN ITCOMPREDREPENSIONSARECONCISEIDEILGEFORTICEFORGELAGELAGERDATASETEN.

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
