


Verstehen von „ValueError: Neuindizierung von einer doppelten Achse nicht möglich“
In Pandas bezieht sich Neuindizierung auf den Vorgang des Änderns der Zeilen- oder Spaltenbeschriftungen eines DataFrames. Wenn eine Neuindizierung versucht wird und eine doppelte Achse gefunden wird, wird der Fehler „ValueError: Neuindizierung von einer doppelten Achse ist nicht möglich“ ausgelöst.
Erklärung
Dieser Fehler tritt normalerweise auf tritt auf, wenn Sie einem DataFrame eine neue Zeile oder Spalte zuweisen, deren Index (Zeilenbeschriftungen) oder Spalten (Spaltenbeschriftungen) doppelte Werte enthalten.
Im Kontext Ihrer Frage weisen Sie eine neue Zeile mit dem Namen „sums“ zu ' zum affinity_matrix DataFrame. Der Fehler deutet jedoch darauf hin, dass die Spalten von affinity_matrix möglicherweise doppelte Werte enthalten. Dies ist wahrscheinlich die Ursache des Problems.
Beispiel
Betrachten Sie den folgenden DataFrame mit Zeichenfolgenbeschriftungszeilen und Ganzzahlbeschriftungsspalten:
import pandas as pd df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "b", "c"], columns=[1, 2, 2])
In diesem DataFrame erscheint Spalte 2 zweimal. Wenn wir versuchen, eine neue Zeile mit dem Namen „Summe“ zuzuweisen, indem wir die Werte in jeder Spalte summieren, wird derselbe Fehler auftreten:
df.loc['sum'] = df.sum(axis=0)
ValueError: cannot reindex from a duplicate axis
Dieser Fehler tritt auf, weil der DataFrame bereits eine Spalte mit der Bezeichnung hat „2“, und der Versuch, daraus eine Neuindizierung durchzuführen, würde zu einer mehrdeutigen Zuweisung führen.
Lösung des Problems
Um dieses Problem zu beheben, müssen Sie überprüfen, ob die Indizes oder Spaltenbeschriftungen Ihres DataFrame enthalten keine doppelten Werte. Wenn dies der Fall ist, können Sie entweder die doppelten Werte entfernen oder sie eindeutig neu kennzeichnen.
Das obige ist der detaillierte Inhalt vonWie behebe ich „ValueError: Neuindizierung von einer doppelten Achse ist nicht möglich' in Pandas?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft
