


Was ist der beste Ansatz, um unabhängige Python-Funktionen asynchron zu parallelisieren?
Parallele Programmierung in Python: Ein umfassender Leitfaden
Für C bietet OpenMP einen unkomplizierten Mechanismus zum Parallelisieren von Code. Allerdings stehen Python-Benutzer bei der Suche nach ähnlichen Funktionen vor Herausforderungen. Dieser Leitfaden zielt darauf ab, diese Herausforderungen anzugehen, indem er eine auf Python zugeschnittene Lösung vorstellt, die es Programmierern ermöglicht, die Leistungsfähigkeit der Parallelverarbeitung zu nutzen, um ihren Code zu optimieren.
Konkret werden wir ein Szenario untersuchen, das zwei unabhängige Funktionen beinhaltet,solve1(A ) undsolve2(B), die parallel und nicht sequentiell ausgeführt werden müssen. Der bereitgestellte Beispielcode hebt diese Funktionen wie folgt hervor:
<code class="python">def solve(Q, G, n): ... setinneropt, partition, x = setinner(Q, G, n) ... if ... node1 = partition[0] node2 = partition[1] ...</code>
Die Schlüsselfunktionen hier sind setinner und setouter, die die unabhängigen Aufgaben darstellen, die wir parallelisieren möchten.
Der empfohlene Ansatz nutzt das Multiprocessing-Modul von Python. insbesondere seine Verarbeitungspools. Diese Pools verwenden generische Worker-Prozesse und weisen jedem CPU-Kern auf Ihrem Computer einen Worker zu. Folglich können mehrere Arbeitsprozesse gleichzeitig die zugewiesenen parallelen Aufgaben ausführen.
Für unser spezifisches Szenario würde der Code so aussehen:
<code class="python">from multiprocessing import Pool pool = Pool() result1 = pool.apply_async(setinner, [Q, G, n]) # Evaluate "setinner(Q, G, n)" asynchronously result2 = pool.apply_async(setouter, [Q, G, n]) # Evaluate "setouter(Q, G, n)" asynchronously answer1 = result1.get(timeout=10) answer2 = result2.get(timeout=10)</code>
Durch die Erstellung eines Verarbeitungspools delegieren wir im Wesentlichen die Ausführung dieser unabhängigen Funktionen, um Prozesse zu trennen und so effektiv eine parallele Verarbeitung zu erreichen.
Es ist wichtig zu beachten, dass die Verwendung von Threads für die parallele Programmierung in Python aufgrund der Global Interpreter Lock (GIL) nicht ratsam ist, die gleichzeitige Vorgänge verhindert Python-Objekte. Daher werden für Pythons parallele Programmierbemühungen Prozesse anstelle von Threads empfohlen.
Das obige ist der detaillierte Inhalt vonWas ist der beste Ansatz, um unabhängige Python-Funktionen asynchron zu parallelisieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

PythonexexecutionStheProcessOfTransformingPythonCodeIntoexexexecleableInstructions.1) ThePythonvirtualmachine (PVM) Ausführungen

Zu den wichtigsten Merkmalen von Python gehören: 1. Die Syntax ist prägnant und leicht zu verstehen, für Anfänger geeignet; 2. Dynamisches Typsystem, Verbesserung der Entwicklungsgeschwindigkeit; 3. Reiche Standardbibliothek, Unterstützung mehrerer Aufgaben; 4. Starke Gemeinschaft und Ökosystem, die umfassende Unterstützung leisten; 5. Interpretation, geeignet für Skript- und Schnellprototypen; 6. Support für Multi-Paradigma, geeignet für verschiedene Programmierstile.

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver CS6
Visuelle Webentwicklungstools

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)
