


Warum leidet die Leistung beim Plotten mit Matplotlib und was kann getan werden?
Leistungsüberlegungen für Matplotlib-Plots
Beim Evaluieren verschiedener Python-Plot-Bibliotheken können bei der Verwendung von Matplotlib Leistungsprobleme auftreten. In diesem Artikel wird untersucht, warum das Plotten von Matplotlib langsam sein kann, und es werden Lösungen zur Verbesserung der Geschwindigkeit bereitgestellt.
Ursachen für Langsamkeit
Die träge Leistung von Matplotlib ist hauptsächlich auf zwei Faktoren zurückzuführen:
- Häufiges Neuzeichnen: Bei jedem Aufruf von fig.canvas.draw() wird die gesamte Figur aktualisiert, einschließlich Elementen wie Achsengrenzen und Teilstrichbeschriftungen. Dieser Prozess ist rechenintensiv.
- Zahlreiche Unterplots: Plots mit mehreren Unterplots mit vielen Tick-Beschriftungen können das Rendern erheblich verlangsamen.
Verbesserung der Leistung
Um die Leistung zu steigern, ziehen Sie die folgenden Strategien in Betracht:
1. Blitting verwenden:
Beim Blitting wird nur ein bestimmter Teil der Leinwand aktualisiert, anstatt die gesamte Figur neu zu zeichnen. Dadurch wird der Rechenaufwand drastisch reduziert. Matplotlib bietet Backend-spezifische Blitting-Methoden, die je nach verwendetem GUI-Framework variieren.
2. Neuzeichnen einschränken:
Verwenden Sie beim Plotten die Option „animated=True“. In Kombination mit dem Matplotlib-Animationsmodul ermöglicht diese Technik spezifische Objektaktualisierungen, ohne eine vollständige Neuzeichnung der Leinwand auszulösen.
3. Unterhandlungen anpassen:
Minimieren Sie die Anzahl der Unterhandlungen und kreuzen Sie Beschriftungen an. Entfernen Sie unnötige Elemente, um die Renderzeit zu verkürzen.
4. Verbessern Sie die Codeeffizienz:
Refaktorieren Sie Ihren Code, um seine Struktur zu verbessern und die Anzahl der durchgeführten Operationen zu reduzieren. Verwenden Sie nach Möglichkeit vektorisierte Vorgänge.
Beispiel:
Hier ist eine optimierte Version des in der Frage bereitgestellten Codes unter Verwendung von Blitting mit copy_from_bbox und restart_region:
<code class="python">import matplotlib.pyplot as plt import numpy as np import time x = np.arange(0, 2*np.pi, 0.01) y = np.sin(x) fig, axes = plt.subplots(nrows=6) fig.show() # Draw the canvas initially styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'p-'] lines = [ax.plot(x, y, style)[0] for ax, style in zip(axes, styles)] # Store background images of the axes backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes] tstart = time.time() for i in range(1, 200): for j, line in enumerate(lines, start=1): # Restore the background fig.canvas.restore_region(backgrounds[j-1]) # Update the data line.set_ydata(sin(j*x+i/10.0)) # Draw the artist and blit ax.draw_artist(line) fig.canvas.blit(ax.bbox) print('FPS:', 200/(time.time()-tstart))</code>
Alternative Bibliotheken
Wenn die Leistung von Matplotlib weiterhin unbefriedigend bleibt, ziehen Sie alternative Plotbibliotheken wie Bokeh, Plotly oder in Betracht Altair. Diese Bibliotheken legen Wert auf Echtzeit-Interaktivität und Leistungsoptimierung.
Das obige ist der detaillierte Inhalt vonWarum leidet die Leistung beim Plotten mit Matplotlib und was kann getan werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools