


Maschinenlesbare Zone (MRZ) ist eine entscheidende Funktion, die in modernen Pässen, Visa und Personalausweisen zum Einsatz kommt. Es enthält wesentliche Informationen über den Dokumenteninhaber, wie z. B. seinen Namen, sein Geschlecht, seinen Ländercode und seine Dokumentennummer. Die MRZ-Erkennung spielt eine Schlüsselrolle bei der Grenzkontrolle, der Flughafensicherheit und den Check-in-Prozessen in Hotels. In diesem Tutorial zeigen wir, wie Sie das Dynamsoft Capture Vision SDK nutzen, um die MRZ-Erkennung unter Windows, Linux und macOS zu implementieren Plattformen. Dieser Leitfaden bietet einen schrittweisen Ansatz zur Nutzung der leistungsstarken Funktionen des SDK, um die plattformübergreifende MRZ-Erkennung nahtlos und effizient zu gestalten.
Python MRZ-Erkennungsdemo auf macOS
Voraussetzungen
Dynamsoft Capture Vision-Testlizenz: Erhalten Sie einen 30-Tage-Testlizenzschlüssel für das Dynamsoft Capture Vision SDK.
-
Python-Pakete: Installieren Sie die erforderlichen Python-Pakete mit den folgenden Befehlen:
pip install dynamsoft-capture-vision-bundle opencv-python
Wozu dienen diese Pakete?
- dynamsoft-capture-vision-bundle ist das Dynamsoft Capture Vision SDK für Python.
- opencv-python erfasst Kamerabilder und zeigt verarbeitete Bildergebnisse an.
Erste Schritte mit dem Dynamsoft Python Capture Vision-Beispiel
Das offizielle MRZ-Scanner-Beispiel zeigt, wie man mit dem Dynamsoft Capture Vision SDK in kurzer Zeit einen einfachen Python-basierten MRZ-Reader erstellt.
Werfen wir einen Blick auf den Quellcode und analysieren seine Funktionalität:
import sys from dynamsoft_capture_vision_bundle import * import os class MRZResult: def __init__(self, item: ParsedResultItem): self.doc_type = item.get_code_type() self.raw_text=[] self.doc_id = None self.surname = None self.given_name = None self.nationality = None self.issuer = None self.gender = None self.date_of_birth = None self.date_of_expiry = None if self.doc_type == "MRTD_TD3_PASSPORT": if item.get_field_value("passportNumber") != None and item.get_field_validation_status("passportNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("passportNumber") elif item.get_field_value("documentNumber") != None and item.get_field_validation_status("documentNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("documentNumber") line = item.get_field_value("line1") if line is not None: if item.get_field_validation_status("line1") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line2") if line is not None: if item.get_field_validation_status("line2") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line3") if line is not None: if item.get_field_validation_status("line3") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) if item.get_field_value("nationality") != None and item.get_field_validation_status("nationality") != EnumValidationStatus.VS_FAILED: self.nationality = item.get_field_value("nationality") if item.get_field_value("issuingState") != None and item.get_field_validation_status("issuingState") != EnumValidationStatus.VS_FAILED: self.issuer = item.get_field_value("issuingState") if item.get_field_value("dateOfBirth") != None and item.get_field_validation_status("dateOfBirth") != EnumValidationStatus.VS_FAILED: self.date_of_birth = item.get_field_value("dateOfBirth") if item.get_field_value("dateOfExpiry") != None and item.get_field_validation_status("dateOfExpiry") != EnumValidationStatus.VS_FAILED: self.date_of_expiry = item.get_field_value("dateOfExpiry") if item.get_field_value("sex") != None and item.get_field_validation_status("sex") != EnumValidationStatus.VS_FAILED: self.gender = item.get_field_value("sex") if item.get_field_value("primaryIdentifier") != None and item.get_field_validation_status("primaryIdentifier") != EnumValidationStatus.VS_FAILED: self.surname = item.get_field_value("primaryIdentifier") if item.get_field_value("secondaryIdentifier") != None and item.get_field_validation_status("secondaryIdentifier") != EnumValidationStatus.VS_FAILED: self.given_name = item.get_field_value("secondaryIdentifier") def to_string(self): msg = (f"Raw Text:\n") for index, line in enumerate(self.raw_text): msg += (f"\tLine {index + 1}: {line}\n") msg+=(f"Parsed Information:\n" f"\tDocumentType: {self.doc_type or ''}\n" f"\tDocumentID: {self.doc_id or ''}\n" f"\tSurname: {self.surname or ''}\n" f"\tGivenName: {self.given_name or ''}\n" f"\tNationality: {self.nationality or ''}\n" f"\tIssuingCountryorOrganization: {self.issuer or ''}\n" f"\tGender: {self.gender or ''}\n" f"\tDateofBirth(YYMMDD): {self.date_of_birth or ''}\n" f"\tExpirationDate(YYMMDD): {self.date_of_expiry or ''}\n") return msg def print_results(result: ParsedResult) -> None: tag = result.get_original_image_tag() if isinstance(tag, FileImageTag): print("File:", tag.get_file_path()) if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_string()) else: items = result.get_items() print("Parsed", len(items), "MRZ Zones.") for item in items: mrz_result = MRZResult(item) print(mrz_result.to_string()) if __name__ == '__main__': print("**********************************************************") print("Welcome to Dynamsoft Capture Vision - MRZ Sample") print("**********************************************************") error_code, error_message = LicenseManager.init_license("LICENSE-KEY") if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", error_code, ", ErrorString:", error_message) else: cvr_instance = CaptureVisionRouter() while (True): image_path = input( ">> Input your image full path:\n" ">> 'Enter' for sample image or 'Q'/'q' to quit\n" ).strip('\'"') if image_path.lower() == "q": sys.exit(0) if image_path == "": image_path = "../Images/passport-sample.jpg" if not os.path.exists(image_path): print("The image path does not exist.") continue result = cvr_instance.capture(image_path, "ReadPassportAndId") if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_code(), result.get_error_string()) else: parsed_result = result.get_parsed_result() if parsed_result is None or len(parsed_result.get_items()) == 0: print("No parsed results.") else: print_results(parsed_result) input("Press Enter to quit...")
Erklärung
- Die Methode LicenseManager.init_license initialisiert das Dynamsoft Capture Vision SDK mit einem gültigen Lizenzschlüssel.
- Die CaptureVisionRouter-Klasse verwaltet Bildverarbeitungsaufgaben und koordiniert verschiedene Bildverarbeitungsmodule. Seine Capture-Methode verarbeitet das Eingabebild und gibt das Ergebnis zurück.
- Die ReadPassportAndId ist eine integrierte Vorlage, die den Verarbeitungsmodus angibt. Das SDK unterstützt verschiedene Verarbeitungsmodi, wie z. B. MRZ-Erkennung, Dokumentkantenerkennung und Barcode-Erkennung.
- Die Methode get_parsed_result ruft das MRZ-Erkennungsergebnis als Wörterbuch ab. Die MRZResult-Klasse extrahiert und verpackt die relevanten MRZ-Informationen. Da diese Klasse in verschiedenen Anwendungen wiederverwendet werden kann, wird empfohlen, sie in eine utils.py-Datei zu verschieben.
Im nächsten Abschnitt verwenden wir OpenCV, um die MRZ-Erkennungsergebnisse zu visualisieren und die erkannten MRZ-Zonen auf dem Passbild anzuzeigen.
Visualizing Machine Readable Zone Location in a Passport Image
In the code above, result is an instance of the CapturedResult class. Calling its get_recognized_text_lines_result() method retrieves a list of TextLineResultItem objects. Each TextLineResultItem object contains the coordinates of the detected text line. Use the following code snippet to extract the coordinates and draw contours on the passport image:
cv_image = cv2.imread(image_path) line_result = result.get_recognized_text_lines_result() items = line_result.get_items() for item in items: location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y del location cv2.drawContours( cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) cv2.imshow( "Original Image with Detected MRZ Zone", cv_image) cv2.waitKey(0) cv2.destroyAllWindows()
Scanning and Recognizing MRZ in Real-time via Webcam
Scanning and recognizing MRZ in real-time via webcam requires capturing a continuous image stream. We can use the OpenCV library to capture frames from the webcam and process them with the Dynamsoft Capture Vision SDK. The following code snippet demonstrates how to implement real-time MRZ recognition using a webcam:
from dynamsoft_capture_vision_bundle import * import cv2 import numpy as np import queue from utils import * class FrameFetcher(ImageSourceAdapter): def has_next_image_to_fetch(self) -> bool: return True def add_frame(self, imageData): self.add_image_to_buffer(imageData) class MyCapturedResultReceiver(CapturedResultReceiver): def __init__(self, result_queue): super().__init__() self.result_queue = result_queue def on_captured_result_received(self, captured_result): self.result_queue.put(captured_result) if __name__ == '__main__': errorCode, errorMsg = LicenseManager.init_license( "LICENSE-KEY") if errorCode != EnumErrorCode.EC_OK and errorCode != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", errorCode, ", ErrorString:", errorMsg) else: vc = cv2.VideoCapture(0) if not vc.isOpened(): print("Error: Camera is not opened!") exit(1) cvr = CaptureVisionRouter() fetcher = FrameFetcher() cvr.set_input(fetcher) # Create a thread-safe queue to store captured items result_queue = queue.Queue() receiver = MyCapturedResultReceiver(result_queue) cvr.add_result_receiver(receiver) errorCode, errorMsg = cvr.start_capturing("ReadPassportAndId") if errorCode != EnumErrorCode.EC_OK: print("error:", errorMsg) while True: ret, frame = vc.read() if not ret: print("Error: Cannot read frame!") break fetcher.add_frame(convertMat2ImageData(frame)) if not result_queue.empty(): captured_result = result_queue.get_nowait() items = captured_result.get_items() for item in items: if item.get_type() == EnumCapturedResultItemType.CRIT_TEXT_LINE: text = item.get_text() line_results = text.split('\n') location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y cv2.drawContours( frame, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) delta = y3 - y1 for line_result in line_results: cv2.putText( frame, line_result, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) y1 += delta del location elif item.get_type() == EnumCapturedResultItemType.CRIT_PARSED_RESULT: mrz_result = MRZResult(item) print(mrz_result.to_string()) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imshow('frame', frame) cvr.stop_capturing() vc.release() cv2.destroyAllWindows()
Explanation
- The FrameFetcher class implements the ImageSourceAdapter interface to feed frame data into the built-in buffer.
- The MyCapturedResultReceiver class implements the CapturedResultReceiver interface. The on_captured_result_received method runs on a native C++ worker thread, sending CapturedResult objects to the main thread where they are stored in a thread-safe queue for further use.
- A CapturedResult contains several CapturedResultItem objects. The CRIT_TEXT_LINE type represents recognized text lines, while the CRIT_PARSED_RESULT type represents parsed MRZ data.
Running the Real-time MRZ Recognition Demo on Windows
Source Code
https://github.com/yushulx/python-mrz-scanner-sdk/tree/main/examples/official
Das obige ist der detaillierte Inhalt vonSo implementieren Sie die Erkennung maschinenlesbarer Zonen (MRZ) in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Dreamweaver Mac
Visuelle Webentwicklungstools
