suchen
HeimBackend-EntwicklungPython-TutorialWie zeichnet man verschiedene Datenkategorien mit Farben in Matplotlib und Seaborn auf?

How to Plot Different Data Categories with Colors in Matplotlib and Seaborn?

Verschiedene Farben für verschiedene kategoriale Ebenen zeichnen

In diesem Artikel untersuchen wir verschiedene Methoden zum Erstellen eines Streudiagramms in der Matplotlib-Bibliothek von Python Datenpunkte werden basierend auf verschiedenen kategorialen Ebenen farblich gekennzeichnet.

Verwendung von matplotlib

matplotlib stellt einen C-Parameter für plt.scatter() bereit, der eine Farbanpassung ermöglicht. Dieser Parameter kann auf eine Liste oder ein Wörterbuch gesetzt werden, das Kategoriewerte Farben zuordnet.

<code class="python">import matplotlib.pyplot as plt
import pandas as pd

# Load data
df = pd.read_csv("diamonds.csv")

# Create a color map
colors = {'D':'tab:blue', 'E':'tab:orange', 'F':'tab:green', 'G':'tab:red', 'H':'tab:purple', 'I':'tab:brown', 'J':'tab:pink'}

# Plot data with color mapping
plt.scatter(df['carat'], df['price'], c=df['color'].map(colors))
plt.show()</code>

Verwendung von Seaborn

Seaborn ist eine Bibliothek, die eine übersichtliche API zum Erstellen statistischer Grafiken mit Matplotlib bereitstellt. Um mit Seaborn ein Streudiagramm mit farbcodierten Datenpunkten zu erstellen, verwenden Sie die Funktion sns.lmplot() mit fit_reg=False, um die Regression zu deaktivieren.

<code class="python">import seaborn as sns

# Plot data with color-coding
sns.lmplot(x='carat', y='price', data=df, hue='color', fit_reg=False)</code>

Verwenden von pandas.DataFrame.groupby & pandas.DataFrame. plot

Wenn Sie Seaborn lieber nicht verwenden möchten, können Sie das gleiche Ergebnis manuell mit pandas.groupby() und pandas.DataFrame.plot() erzielen. Bei dieser Methode werden die Daten nach Farben gruppiert und dann jede Gruppe einzeln mit einer bestimmten Farbe dargestellt.

<code class="python">fig, ax = plt.subplots()

grouped = df.groupby('color')
for key, group in grouped:
    group.plot(ax=ax, kind='scatter', x='carat', y='price', label=key, color=colors[key])</code>

Durch die Implementierung dieser Techniken können Sie informative Streudiagramme erstellen, die Beziehungen zwischen verschiedenen kategorialen Ebenen visuell darstellen.

Das obige ist der detaillierte Inhalt vonWie zeichnet man verschiedene Datenkategorien mit Farben in Matplotlib und Seaborn auf?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind die Alternativen zur Verkettung von zwei Listen in Python?Was sind die Alternativen zur Verkettung von zwei Listen in Python?May 09, 2025 am 12:16 AM

Es gibt viele Methoden, um zwei Listen in Python zu verbinden: 1. Verwenden Sie Operatoren, die in großen Listen einfach, aber ineffizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3.. Verwenden Sie den operator =, der sowohl effizient als auch lesbar ist; 4. Verwenden Sie die Funktion iterertools.chain, die Speichereffizient ist, aber zusätzlichen Import erfordert. 5. Verwenden Sie List Parsing, die elegant ist, aber zu komplex sein kann. Die Auswahlmethode sollte auf dem Codekontext und den Anforderungen basieren.

Python: Effiziente Möglichkeiten, zwei Listen zusammenzuführenPython: Effiziente Möglichkeiten, zwei Listen zusammenzuführenMay 09, 2025 am 12:15 AM

Es gibt viele Möglichkeiten, Python -Listen zusammenzuführen: 1. Verwenden von Operatoren, die einfach, aber nicht für große Listen effizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3. Verwenden Sie iTertools.chain, das für große Datensätze geeignet ist. 4. Verwenden Sie * Operator, fusionieren Sie kleine bis mittelgroße Listen in einer Codezeile. 5. Verwenden Sie Numpy.concatenate, das für große Datensätze und Szenarien mit hohen Leistungsanforderungen geeignet ist. 6. Verwenden Sie die Append -Methode, die für kleine Listen geeignet ist, aber ineffizient ist. Bei der Auswahl einer Methode müssen Sie die Listengröße und die Anwendungsszenarien berücksichtigen.

Kompiliert gegen interpretierte Sprachen: Vor- und NachteileKompiliert gegen interpretierte Sprachen: Vor- und NachteileMay 09, 2025 am 12:06 AM

CompiledLanguageOfferSpeedandSecurity, während interpretedLanguagesProvideaseofuseAnDportabilität.1) kompiledlanguageslikec areFasterandSecurebuthavelongerDevelopmentCyclesandplatformDependency.2) InterpretedLanguages ​​-pythonareaToReAndoreAndorePortab

Python: Für und während Schleifen der vollständigste LeitfadenPython: Für und während Schleifen der vollständigste LeitfadenMay 09, 2025 am 12:05 AM

In Python wird eine für die Schleife verwendet, um iterable Objekte zu durchqueren, und eine WHHE -Schleife wird verwendet, um Operationen wiederholt durchzuführen, wenn die Bedingung erfüllt ist. 1) Beispiel für Schleifen: Überqueren Sie die Liste und drucken Sie die Elemente. 2) Während des Schleifens Beispiel: Erraten Sie das Zahlenspiel, bis Sie es richtig erraten. Mastering -Zyklusprinzipien und Optimierungstechniken können die Code -Effizienz und -zuverlässigkeit verbessern.

Python verkettet listet in eine Zeichenfolge aufPython verkettet listet in eine Zeichenfolge aufMay 09, 2025 am 12:02 AM

Um eine Liste in eine Zeichenfolge zu verkettet, ist die Verwendung der join () -Methode in Python die beste Wahl. 1) Verwenden Sie die monjoy () -Methode, um die Listelemente in eine Zeichenfolge wie "" .Join (my_list) zu verkettet. 2) Für eine Liste, die Zahlen enthält, konvertieren Sie die Karte (STR, Zahlen) in eine Zeichenfolge, bevor Sie verkettet werden. 3) Sie können Generatorausdrücke für komplexe Formatierung verwenden, wie z. 4) Verwenden Sie bei der Verarbeitung von Mischdatentypen MAP (STR, MIXED_LIST), um sicherzustellen, dass alle Elemente in Zeichenfolgen konvertiert werden können. 5) Verwenden Sie für große Listen '' .Join (large_li

Pythons Hybridansatz: Zusammenstellung und Interpretation kombiniertPythons Hybridansatz: Zusammenstellung und Interpretation kombiniertMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach, kombinierte CompilationTobyteCodeAnDinterpretation.1) codiscompiledtoplatform-unintenpendentBytecode.2) BytecodeIsinterpretedBythepythonvirtualMachine, EnhancingEfficiency und Portablabilität.

Erfahren Sie die Unterschiede zwischen Pythons 'für' und 'while the' LoopsErfahren Sie die Unterschiede zwischen Pythons 'für' und 'while the' LoopsMay 08, 2025 am 12:11 AM

Die Keedifferzences -zwischen Pythons "für" und "während" Loopsare: 1) "für" LoopsareideAlForiteratingOvercesorknownowniterations, während 2) "LoopsarebetterForContiningUtilAconditionismethoutnredefineditInations.un

Python verkettet Listen mit DuplikatenPython verkettet Listen mit DuplikatenMay 08, 2025 am 12:09 AM

In Python können Sie Listen anschließen und doppelte Elemente mit einer Vielzahl von Methoden verwalten: 1) Verwenden von Operatoren oder erweitert (), um alle doppelten Elemente beizubehalten; 2) Konvertieren in Sets und kehren Sie dann zu Listen zurück, um alle doppelten Elemente zu entfernen. Die ursprüngliche Bestellung geht jedoch verloren. 3) Verwenden Sie Schleifen oder listen Sie Verständnisse auf, um Sätze zu kombinieren, um doppelte Elemente zu entfernen und die ursprüngliche Reihenfolge zu verwalten.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.