


Umfassende Wetterdatenanalyse mit Python: Temperatur, Niederschlagstrends und Visualisierungen
-
Wetterdatenanalyse und -vorhersage für verschiedene Städte in Kenia
- Einführung
- Datensatzübersicht
- Explorative Datenanalyse
- Visualisierung wichtiger Wetterfunktionen
- Analyse der Wetterbedingungen
- Stadtbezogener Niederschlag
- Durchschnittliche Monatstemperatur
- Durchschnittlicher monatlicher Niederschlag
- Korrelation zwischen Wettervariablen
- Fallstudie: Stadtspezifische Trends
- Fazit
Wetterdatenanalyse und -vorhersage für verschiedene Städte in Kenia
Einführung
In diesem Artikel werde ich Sie durch die Analyse von Wettermustern mit Python führen. Von der Identifizierung von Temperaturtrends bis hin zur Visualisierung von Niederschlägen ist diese Schritt-für-Schritt-Anleitung perfekt für alle, die sich für den Einsatz datenwissenschaftlicher Techniken zur Wetteranalyse interessieren. Ich werde Code, Datenmanipulation und Visualisierungen untersuchen, um praktische Erkenntnisse zu gewinnen.
In Kenia spielt das Wetter in vielen Bereichen eine entscheidende Rolle, insbesondere in der Landwirtschaft, im Tourismus und bei Outdoor-Aktivitäten. Landwirte, Unternehmen und Veranstaltungsplaner benötigen genaue Wetterinformationen, um Entscheidungen treffen zu können. Allerdings können die Wettermuster in verschiedenen Regionen erheblich variieren und aktuelle Vorhersagesysteme liefern möglicherweise nicht immer lokalisierte Erkenntnisse.
Ziel dieses Projekts ist es, Echtzeit-Wetterdaten von der OpenWeatherMap-API und der Wetter-API für verschiedene Regionen in ganz Kenia zu sammeln. Diese Daten werden in einer Datenbank gespeichert und mit Python analysiert, um Erkenntnisse zu gewinnen über:-
- Temperaturtrends
- Niederschlagsmuster – Luftfeuchtigkeit und Windverhältnisse
In diesem Projekt analysiere ich einen Datensatz mit Wetterinformationen für verschiedene Städte in Kenia. Der Datensatz umfasst über 3.000 Zeilen mit Wetterbeobachtungen, darunter unter anderem Temperatur, Luftfeuchtigkeit, Druck, Windgeschwindigkeit, Sichtweite und Niederschlag. Mithilfe dieser Erkenntnisse möchten wir genaue, regionalspezifische Wettervorhersagen bereitstellen, die die Entscheidungsfindung in wetterempfindlichen Sektoren wie Landwirtschaft, Tourismus und sogar Management unterstützen können.
Datensatzübersicht
Der Datensatz wurde mithilfe mehrerer Spalten strukturiert:
- Datum/Uhrzeit – Zeitstempel, der angibt, wann das Wetter aufgezeichnet wurde.
- Stadt und Land – Ort der Wetterbeobachtung.
- Breitengrad und Längengrad – Geografische Koordinaten des Standorts.
- Temperatur (Celsius) – Die aufgezeichnete Temperatur.
- Luftfeuchtigkeit (%) – Der Prozentsatz der Luftfeuchtigkeit in der Luft.
- Druck (hPa) – Der atmosphärische Druck in Hektopascal.
- Windgeschwindigkeit (m/s) – Die Geschwindigkeit des Windes zu diesem Zeitpunkt.
- Regen (mm) – Die Niederschlagsmenge, gemessen in Millimetern.
- Wolken (%) – Der Prozentsatz der Wolkenbedeckung.
- Wetterzustand und Wetterbeschreibung – Allgemeine und detaillierte Beschreibungen des Wetters (z. B. „Wolken“, „Vereinzelte Wolken“).
So sind die Daten in der Datenbank strukturiert.
Explorative Datenanalyse
Der erste Schritt der Analyse umfasste die grundlegende Untersuchung der Daten.
_ Datendimensionen – Der Datensatz enthält 3.000 Zeilen und 14 Spalten.
_ Nullwerte – Minimale fehlende Daten, um sicherzustellen, dass der Datensatz für die weitere Analyse zuverlässig war.
print(df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].describe())
Mithilfe des obigen Codes haben wir zusammenfassende Statistiken für die numerischen Spalten berechnet, die Einblicke in den Bereich, den Mittelwert und die Ausbreitung von Temperatur, Luftfeuchtigkeit, Druck, Niederschlag und Wolken liefern.
Visualisierung wichtiger Wetterfunktionen
Um ein klareres Verständnis der Wettermerkmale zu erhalten, haben wir verschiedene Verteilungen aufgezeichnet:
Temperaturverteilung
sns.displot(df1['temperature_celsius'], bins=50, kde=True) plt.title('Temperature Distribution') plt.xlabel('Temperature (Celsius)')
Diese Verteilung zeigt die allgemeine Temperaturverteilung in den Städten. Das KDE-Liniendiagramm liefert eine glatte Schätzung der Wahrscheinlichkeitsverteilung der Temperatur.
Niederschlagsverteilung
sns.displot(df1['rain'], bins=50, kde=True) plt.title('Rainfall Distribution') plt.xlabel('Rainfall (mm/h)')
Dieser Code analysiert die Niederschlagsverteilung in kenianischen Städten.
Luftfeuchtigkeit, Druck und Windgeschwindigkeit
Ähnliche Verteilungsdiagramme für Luftfeuchtigkeit (%), Druck (hPa) und Windgeschwindigkeit (m/s), die jeweils nützliche Einblicke in die liefern Variationen dieser Parameter im gesamten Datensatz.
Wetterzustandsanalyse
Wetterbedingungen (z. B. „Wolken“, „Regen“) wurden gezählt und mithilfe eines Kreisdiagramms visualisiert, um ihre proportionale Verteilung anzuzeigen:
condition_counts = df1['weather_condition'].value_counts() plt.figure(figsize=(8,8)) plt.pie(condition_counts, labels=condition_counts.index, autopct='%1.1f%%', pctdistance=1.1, labeldistance=0.6, startangle=140) plt.title('Distribution of Weather Conditions') plt.axis('equal') plt.show()
City-wise Rainfall
One of the key analysis was the total rainfall by city:
rainfall_by_city = df1.groupby('city')['rain'].sum().sort_values() plt.figure(figsize=(12,12)) rainfall_by_city.plot(kind='barh', color='skyblue') plt.title('Total Rainfall by City') plt.xlabel('Total Rainfall (mm)') plt.ylabel('City') plt.tight_layout() plt.show()
This bar plot highlighted which cities received the most rain over the observed period, with a few outliers showing significant rainfall compared to others.
Average Monthly Temperature
avg_temp_by_month.plot(kind='line') plt.title('Average Monthly Temperature')
The line chart revealed temperature fluctuations across different months, showing seasonal changes.
Average Monthly Rainfall
monthly_rain.plot(kind='line') plt.title('Average Monthly Rainfall')
Similarly, rainfall was analyzed to observe how it varied month-to-month.
We also visualized the data using heatmaps for a more intuitive understanding of monthly temperature and rainfall.
Here are the heatmaps for the average monthly temperature and rainfall
Correlation Between Weather Variables
Next, I calculated the correlation matrix between key weather variables:
correlation_matrix = df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].corr() correlation_matrix sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Between Weather Variables')
This heatmap allowed us to identify relationships between variables. For example, we observed a negative correlation between temperature and humidity, as expected.
Case Study: City Specific Trends
I have focused on individual cities such as Mombasa and Nyeri, to explore their unique weather patterns:
Mombasa Temperature Trends
plt.plot(monthly_avg_temp_msa) plt.title('Temperature Trends in Mombasa Over Time')
This city showed significant variation in temperature across the year.
Nyeri Rainfall Trends
plt.plot(monthly_avg_rain_nyr) plt.title('Rainfall Trends in Nyeri Over Time')
The rainfall data for Nyeri displayed a clear seasonal pattern, with rainfall peaking during certain months.
Conclusion
This analysis provides a comprehensive overview of the weather conditions in major cities, highlighting the temperature, rainfall, and other key weather variables. By using visualizations like histograms, line charts, pie charts, and heatmaps, we were able to extract meaningful insights into the data. Further analysis could involve comparing these trends with historical weather patterns or exploring predictive modeling to forecast future weather trends.
You can find the Jupyter Notebook with the full code for this analysis in my GitHub repository).
Das obige ist der detaillierte Inhalt vonUmfassende Wetterdatenanalyse mit Python: Temperatur, Niederschlagstrends und Visualisierungen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version