suchen

IndexIVFFlat y IndexIVFPQ

Hier ist ein Vergleich zwischen den Indizes IndexIVFFlat und IndexIVFPQ sowie einige Alternativen für deren Verwendung:

Vergleich: IndexIVFFlat vs. IndexIVFPQ

Merkmal
Characteristic IndexIVFFlat IndexIVFPQ
Storage Type Stores vectors in their original form. Utilizes product quantization (PQ) to compress vectors.
Precision High precision, as it performs exact searches within cells. May sacrifice some precision for compression, but still provides good results.
Search Speed Slower on large datasets due to exhaustive search. Faster, especially on large sets, thanks to reduced search space.
Memory Usage Consumes more memory as it stores all vectors without compression. Consumes significantly less memory due to compression (up to 97% less).
Configuration Simpler, only requires defining the number of cells (nlist). Requires defining both the number of cells (nlist) and code size (code_size).
Training Needs to be trained to create cells before adding data. Also requires training, but the process is more complex due to quantization.
IndexIVFFlat IndexIVFPQ Speichertyp Speichert Vektoren in ihrer ursprünglichen Form. Nutzt die Produktquantisierung (PQ), um Vektoren zu komprimieren. Präzision Hohe Präzision, da genaue Suchvorgänge innerhalb von Zellen durchgeführt werden. Kann bei der Komprimierung zu Einbußen bei der Präzision führen, liefert aber immer noch gute Ergebnisse. Suchgeschwindigkeit Langsamer bei großen Datensätzen aufgrund der umfassenden Suche. Schneller, insbesondere bei großen Mengen, dank reduziertem Suchraum. Speichernutzung Benötigt mehr Speicher, da alle Vektoren ohne Komprimierung gespeichert werden. Verbrauch aufgrund der Komprimierung deutlich weniger Speicher (bis zu 97 % weniger). Konfiguration Einfacher, erfordert nur die Definition der Anzahl der Zellen (nlist). Erfordert die Definition sowohl der Anzahl der Zellen (nlist) als auch der Codegröße (code_size). Schulung Muss trainiert werden, um Zellen zu erstellen, bevor Daten hinzugefügt werden. Erfordert ebenfalls Schulung, aber der Prozess ist aufgrund der Quantisierung komplexer.

장점과 단점

IndexIVFFlat의 장점

  • 정밀도: 각 셀 내에서 검색할 때 정확한 결과를 제공합니다.
  • 단순성: 이해하고 구성하기 쉽습니다.

IndexIVFFlat의 단점

  • 속도: 대용량 데이터의 경우 매우 느릴 수 있습니다.
  • 메모리 사용량: 메모리 사용량을 최적화하지 않으므로 대용량 데이터 세트에서 문제가 될 수 있습니다.

IndexIVFPQ의 장점

  • 속도: 검색 공간이 줄어들어 검색 속도가 훨씬 빨라집니다.
  • 메모리 효율성: 메모리 사용량을 대폭 줄여 더 큰 데이터 세트를 처리할 수 있습니다.

IndexIVFPQ의 단점

  • 정밀도: 압축으로 인해 정밀도가 약간 손실될 수 있습니다.
  • 복잡성: IndexIVFFlat보다 구성 및 교육이 더 복잡합니다.

대안

  1. IndexFlatL2

    • 압축하지 않고 전체 검색을 수행합니다. 최대의 정밀도가 요구되는 소규모 데이터 세트에 이상적입니다.
  2. IndexPQ

    • 클러스터링 없이 제품 양자화만 사용합니다. 속도와 정밀도 사이의 균형이 필요하지만 클러스터링이 필요하지 않은 경우에 유용합니다.
  3. IndexIVFScalarQuantizer

    • 역 인덱스와 스칼라 양자화를 결합하여 메모리 사용량을 줄이고 속도를 향상시키는 색다른 접근 방식을 제공합니다.
  4. 색인IVFPQR

    • IVF와 PQ를 코드 기반 재순위와 결합하여 속도와 향상된 정밀도 사이의 균형을 제공하는 변형입니다.
  5. 복합 인덱스

    • index_factory를 사용하면 여러 기술(예: OPQ IVF PQ)을 결합하는 복합 인덱스를 생성하여 성능을 더욱 최적화할 수 있습니다.

이러한 대안을 사용하면 해결되는 특정 사례에 따라 정밀도, 속도 및 메모리 사용량 측면에서 다양한 요구에 맞게 솔루션을 조정할 수 있습니다.

인용:
[1] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[2] https://ai.plainenglish.io/speeding-up-similarity-search-in-recommender-systems-with-faiss-advanced-concepts-part-ii-95e796a7db74?gi=ce57aff1a0c4
[3] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[4] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[5] https://unfoldai.com/effortless-large-scale-image-retrieval-with-faiss-a-hands-on-tutorial/
[6] https://www.pinecone.io/learn/series/faiss/product-Quantization/
[7] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[8] https://github.com/facebookresearch/faiss/issues/1113

En Español, Soy Español, pero por respeto a la comunidad, pongo primeo la traduccion al inglés.

Aquítienes una comparación entre los índices IndexIVFFlat e IndexIVFPQ, junto con algunas alternativas para su uso:

비교: IndexIVFFlat 및 IndexIVFPQ

Característica
Característica IndexIVFFlat IndexIVFPQ
Tipo de Almacenamiento Almacena vectores en su forma original. Utiliza cuantización de producto (PQ) para comprimir vectores.
Precisión Alta precisión, ya que realiza búsquedas exactas dentro de las celdas. Puede sacrificar algo de precisión por la compresión, pero aún proporciona buenos resultados.
Velocidad de Búsqueda Más lento en grandes conjuntos de datos debido a la búsqueda exhaustiva. Más rápido, especialmente en grandes conjuntos, gracias a la reducción del espacio de búsqueda.
Uso de Memoria Consume más memoria porque almacena todos los vectores sin compresión. Consume significativamente menos memoria debido a la compresión (hasta 97% menos).
Configuración Más simple, solo requiere definir el número de celdas (nlist). Requiere definir tanto el número de celdas (nlist) como el tamaño del código (code_size).
Entrenamiento Necesita ser entrenado para crear las celdas antes de añadir datos. También necesita entrenamiento, pero el proceso es más complejo debido a la cuantización.
색인IVFFlat 색인IVFPQ 티포 데 알마세나미엔토 Almacena 벡터는 원본 형식으로 작성되었습니다. 제품 비교(PQ) 벡터 비교를 활용합니다. 정밀도 Alta precisión, ya que realiza búsquedas 정확한 as dentro de las celdas. Puede sacrificar algo de precisión por la compresión, pero aún proporciona buenos resultados. 벨로시다드 데 부스케다 Más lento en grandes conjuntos de datos debido a la búsquedahausiva. Más rápido, especialmente en grandes conjuntos, gracias a la reducción del espacio de búsqueda. Uso de Memoria más memoria porque almacena todos los 벡터es sin compresión을 사용하세요. 압축된 기억력을 의미 있게 소비하세요(97% menos). 구성 Más simple, solo는 셀다 수를 정의해야 합니다(nlist). tanto el número de celdas(nlist) como el tamaño del código(code_size)를 정의해야 합니다. 엔트레나미엔토 당신의 데이터를 확인하기 위해서는 entrenado para las celdas antes de añadir datos가 필요합니다. También necesita entrenamiento, pero el proceso es más complejo debido a la cuantización.

Kebaikan dan Keburukan

Kebaikan IndexIVFFlat

  • Ketepatan: Memberikan hasil yang tepat apabila mencari setiap sel.
  • Kesederhanaan: Mudah difahami dan dikonfigurasikan.

Keburukan IndexIVFFlat

  • Kelajuan: Boleh menjadi sangat perlahan dengan volum data yang besar.
  • Penggunaan Memori: Tidak mengoptimumkan penggunaan memori, yang boleh menjadi masalah dengan set data yang besar.

Kebaikan IndexIVFPQ

  • Kelajuan: Jauh lebih pantas dalam carian disebabkan pengurangan ruang carian.
  • Kecekapan Memori: Mengurangkan penggunaan memori dengan ketara, membolehkan set data yang lebih besar dikendalikan.

Keburukan IndexIVFPQ

  • Ketepatan: Mungkin terdapat sedikit kehilangan ketepatan akibat mampatan.
  • Kerumitan: Konfigurasi dan latihan adalah lebih kompleks berbanding IndexIVFFlat.

Alternatif

  1. IndexFlatL2

    • Melakukan carian menyeluruh tanpa pemampatan. Sesuai untuk set data kecil yang memerlukan ketepatan maksimum.
  2. IndexPQ

    • Gunakan kuantiti produk sahaja tanpa pengelompokan. Ia berguna apabila keseimbangan antara kelajuan dan ketepatan diperlukan, tetapi pengumpulan tidak diperlukan.
  3. IndexIVFScalarQuantizer

    • Ia menggabungkan indeks terbalik dengan pengkuantitian skalar, menawarkan pendekatan berbeza untuk mengurangkan penggunaan memori dan meningkatkan kelajuan.
  4. IndexIVFPQR

    • Varian yang menggabungkan IVF dan PQ dengan pemeringkatan semula berasaskan kod, menawarkan keseimbangan antara kelajuan dan ketepatan yang dipertingkatkan.
  5. Indeks Komposit

    • Gunakan index_factory untuk mencipta indeks komposit yang menggabungkan berbilang teknik (cth. OPQ IVF PQ) untuk mengoptimumkan lagi prestasi.

Alternatif ini membolehkan anda menyesuaikan penyelesaian kepada keperluan yang berbeza dari segi ketepatan, kelajuan dan penggunaan memori bergantung pada kes khusus yang anda tangani.

Petikan:
[1] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[2] https://www.pinecone.io/learn/series/faiss/product-quantization/
[3] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[4] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[5] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[6] https://pub.towardsai.net/unlocking-the-power-of-efficient-vector-search-in-rag-applications-c2e3a0c551d5?gi=71a82e3ea10e
[7] https://www.pingcap.com/article/mastering-faiss-vector-database-a-beginners-handbook/
[8] https://wangzwhu.github.io/home/file/acmmm-t-part3-ann.pdf
[9] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-IndexIVFPQ.py
[10] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-indexivfflat.py

Das obige ist der detaillierte Inhalt vonIndexIVFFlaty IndexIVFPQ. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Der Hauptzweck von Python: Flexibilität und BenutzerfreundlichkeitDer Hauptzweck von Python: Flexibilität und BenutzerfreundlichkeitApr 17, 2025 am 12:14 AM

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python: Die Kraft der vielseitigen ProgrammierungPython: Die Kraft der vielseitigen ProgrammierungApr 17, 2025 am 12:09 AM

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Python in 2 Stunden am Tag lernen: Ein praktischer LeitfadenPython in 2 Stunden am Tag lernen: Ein praktischer LeitfadenApr 17, 2025 am 12:05 AM

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python gegen C: Vor- und Nachteile für EntwicklerPython gegen C: Vor- und Nachteile für EntwicklerApr 17, 2025 am 12:04 AM

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Python: zeitliches Engagement und LerntempoPython: zeitliches Engagement und LerntempoApr 17, 2025 am 12:03 AM

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python: Automatisierung, Skript- und AufgabenverwaltungPython: Automatisierung, Skript- und AufgabenverwaltungApr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python und Zeit: Machen Sie das Beste aus Ihrer StudienzeitPython und Zeit: Machen Sie das Beste aus Ihrer StudienzeitApr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Spiele, GUIs und mehrPython: Spiele, GUIs und mehrApr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft