Während einer spannenden und informativen Sitzung diese Woche mit der Lux Tech Academy Kenya erhielten wir eine umfassende Einführung in Python für Daten und Analysen.
Als Erstes müssen Sie Anaconda installieren, das Jupyter-Notebook herunterladen und starten. Hier ist ein Link zum Herunterladen von Anaconda/Jupyter Notebooks: Anaconda/Jupyter Notebooks-Installation
Ich fühle mich wie ein bis zum Rand gefülltes Gefäß mit einer Fülle all dieses Wissens, von dem ich einige Highlights teilen werde.
Tupel beziehen sich auf integrierte Datentypen, die die Organisation von Daten erleichtern, ähnlich wie Listen, aber einzigartiger. Sie werden durch Klammern definiert;my_cars= (1,2,3). Tupel stellen eine feste Sammlung von Elementen dar, die sich im Laufe der Zeit nicht ändern, z. B. Breiten- und Längengrade. Im Gegensatz zu Listen sind Tupel nicht veränderbar; einmal definiert, kann man die Elemente in einem Tupel nicht mehr ändern oder verändern.
Python-Listen beziehen sich auch auf integrierte Datensysteme, die es Ihnen ermöglichen, Informationen in bestimmten Kategorien zu organisieren, die sich geringfügig von Tupeln unterscheiden. Hier ist ein Beispiel für eine Liste von Früchten: my_fruits=['mangos','apples','trauben']
Listen können Elemente unterschiedlicher Datentypen speichern, ihre Elemente sind durch die Verwendung von Funktionen wie .apend(),.remove()usw. veränderbar und können daher im Programm dynamisch wachsen.
NumPy-Arrays bieten ebenfalls eine effiziente Möglichkeit, große Datensätze in Python-Bibliotheken zu speichern, unterscheiden sich jedoch von Listen und Tupeln in folgenden Punkten: Sie speichern nur Elemente desselben Datentyps, sie verbrauchen weniger Speicherplatz und haben keine Schleifenprozesse da sie vektorisierte Operationen unterstützen.
Es gibt verschiedene Prozesse, die die Speichernutzung in Python verwalten, aber wir werden uns hauptsächlich auf die Garbage Collection konzentrieren. Dadurch wird Speicher reserviert, indem Objekte entfernt werden, die von Programmen nicht mehr benötigt werden.
1.Die Müllabfuhr kann erfolgen durch:
Referenzzählung: verfolgt die Anzahl der Referenzen, die auf ein bestimmtes Objekt in einem Python-Programm verweisen. Wenn der Referenzzähler auf Null sinkt, wird der vom Objekt verwendete Speicher verworfen.
2. Zyklische Sammlung: Dies ähnelt der letzteren, wird jedoch in Fällen verwendet, in denen Objekte in einem Zyklus aufeinander verweisen.
Zuletzt werde ich etwas Licht auf die Funktionen in einem Analyseskript werfen. Eine Funktion ist eine wiederverwendbare Codezeile, die einzeln aufgerufen werden kann, um dieselbe Aufgabe auszuführen. Die grundlegende Syntax lautet:
`def Funktionsname(Operation)
Codeblock
Beschreibung der Funktion
Rückgabewert
Beispiel:
quadratliste=[b**2 für b im Bereich(1,10)]
print(squared_list)`
Ausgabe: [1,4,9,16,49,64,81]
Jupyter Notebook ist sehr einsteigerfreundlich, daher kann ich es hier wärmstens empfehlen.
Dies ist nur die Spitze des Eisbergs und ich kann es kaum erwarten, in meinem nächsten Kurs mehr zu lernen. Wissen ist Macht, also lasst uns weiter lernen und aufbauen, um uns eine bessere Zukunft zu gestalten!
Das obige ist der detaillierte Inhalt vonEINFÜHRUNG IN PYTHON FÜR DIE DATENANALYSE. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung