Heim  >  Artikel  >  Java  >  D – Abhängigkeitsinversionsprinzip (DIP)

D – Abhängigkeitsinversionsprinzip (DIP)

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-10-06 06:13:03661Durchsuche

D - Dependency Inversion Principle(DIP)

Avant de comprendre le DIP (Principe d'inversion de dépendance), il est important de savoir ce que sont les modules et abstractions de haut niveau et de bas niveau.

Module de haut niveau :

Un module de haut niveau fait référence aux parties d'une application qui gèrent les fonctionnalités de base ou la logique métier. Ces modules gèrent généralement des fonctions plus importantes et plus critiques de l'application. Les modules de haut niveau effectuent généralement des tâches plus larges et plus complexes, et ils peuvent dépendre d'autres modules pour faire leur travail.

Par exemple, si vous créez une application de commerce électronique, le système de gestion des commandes serait un module de haut niveau. Il gère les tâches importantes telles que la prise de commandes, leur traitement, la gestion des livraisons, etc.

Module de bas niveau :

Les modules de bas niveau, quant à eux, sont responsables de tâches spécifiques et plus petites. Ces modules fonctionnent à un niveau fondamental de l'application et effectuent un travail plus détaillé, comme stocker des données dans la base de données, configurer les paramètres réseau, etc. Les modules de bas niveau aident généralement les modules de haut niveau à effectuer leurs tâches.

En continuant avec l'exemple du commerce électronique, l'intégration de la passerelle de paiement serait un module de bas niveau. Son travail consiste spécifiquement à traiter les paiements, ce qui est une tâche plus spécialisée par rapport aux fonctionnalités plus larges du système de gestion des commandes.

Abstraction:

En termes simples, l'abstraction fait référence à une idée générale ou à une représentation d'un système ou d'un processus. Il définit ce qui devrait se produire mais ne précise pas comment cela se produira. Il se concentre sur les fonctionnalités essentielles sans entrer dans les détails de mise en œuvre sous-jacents.

Exemple:

Imaginez que vous allez conduire une voiture. Le concept de conduite automobile (c'est-à-dire l'abstraction) comprend :

  • Démarrer la voiture
  • Arrêter la voiture

Cependant, l'abstraction ne précise pas comment ces actions seront effectuées. Il ne vous indique pas de quel type de voiture il s'agit, de quel type de moteur elle est équipée, ni des mécanismes spécifiques qui font démarrer ou arrêter la voiture. Il donne seulement une idée générale de ce qui doit être fait.

Abstraction dans la conception de logiciels :

Dans la conception de logiciels, l'abstraction signifie la création d'un contrat ou d'une structure générale à l'aide d'une interface ou d'une classe abstraite qui définit un ensemble de règles ou d'actions, mais la mise en œuvre spécifique de ces actions est laissée à part. Cela permet de définir ce qui doit être fait sans préciser comment cela sera fait.

Exemple:

Vous pourriez avoir une PaymentInterface qui déclare une méthode de traitement des paiements. L'interface précise qu'un paiement doit être traité, mais elle ne définit pas comment le paiement sera traité. Cela peut être fait via différentes implémentations telles que PayPal, Stripe ou d'autres méthodes de paiement.

Essentiellement, l'abstraction se concentre sur la fonctionnalité générale tout en laissant la mise en œuvre flexible, ce qui facilite sa modification ou son extension à l'avenir.

Qu'est-ce que le principe d'inversion de dépendance (DIP) ?

Selon le principe d'inversion de dépendance (DIP), les modules de haut niveau ne doivent pas dépendre directement des modules de bas niveau. Au lieu de cela, les deux devraient s'appuyer sur des abstractions, telles que des interfaces ou des classes abstraites. Cela permet aux modules de haut niveau et de bas niveau de fonctionner indépendamment les uns des autres, rendant le système plus flexible et réduisant l'impact des changements.

Explication simplifiée :

Imaginez que vous ayez une application avec plusieurs fonctionnalités. Si une fonctionnalité dépend directement d’une autre, sa modification nécessitera des modifications dans de nombreuses parties du code. Le DIP suggère qu'au lieu d'une dépendance directe, vous devriez faire fonctionner différentes parties de votre application via une interface ou une abstraction commune. De cette façon, chaque module peut fonctionner indépendamment et les modifications apportées à une fonctionnalité auront un impact minimal sur le reste du système.

Deux points clés du DIP :

  • Les modules de haut niveau ne doivent pas dépendre des modules de bas niveau. Au lieu de cela, les deux devraient s'appuyer sur des abstractions.

  • Il devrait y avoir une dépendance aux abstractions, pas au concret (implémentations spécifiques).

Exemple:

Envisagez un système de paiement dans lequel vous pouvez utiliser à la fois PayPal et Stripe comme méthodes de paiement. Si vous travaillez directement avec PayPal ou Stripe, l'ajout ultérieur d'une nouvelle passerelle de paiement nécessiterait des modifications importantes du code dans l'ensemble de votre application.

Cependant, si vous suivez DIP, vous utiliserez une interface de paiement générale. PayPal et Stripe implémenteraient cette interface. De cette façon, si vous souhaitez ajouter une nouvelle passerelle de paiement à l'avenir, il vous suffira simplement d'implémenter l'interface existante, ce qui rendra le processus beaucoup plus facile.

Durch die Befolgung dieses Prinzips verbessert DIP die Wartbarkeit und Flexibilität Ihres Codes und ermöglicht reibungslosere Anpassungen und Erweiterungen ohne größere Unterbrechungen.

Beispiel 1:

Betrachten wir eine Anwendung, bei der Sie verschiedene Fahrzeugtypen starten und stoppen müssen. Sie können eine Fahrzeugschnittstelle erstellen, die als Abstraktion dient. Jedes Fahrzeug kann diese Schnittstelle implementieren, um seine eigene Funktionalität bereitzustellen.

Java-Code:

 // Abstraction: Vehicle interface
interface Vehicle {
    void start();
    void stop();
}

// Car class implements Vehicle interface
class Car implements Vehicle {
    public void start() {
        System.out.println("Car started");
    }

    public void stop() {
        System.out.println("Car stopped");
    }
}

// Bike class implements Vehicle interface
class Bike implements Vehicle {
    public void start() {
        System.out.println("Bike started");
    }

    public void stop() {
        System.out.println("Bike stopped");
    }
}

// Main class
public class Main {
    public static void main(String[] args) {
        Vehicle car = new Car(); // Car as Vehicle
        car.start();
        car.stop();

        Vehicle bike = new Bike(); // Bike as Vehicle
        bike.start();
        bike.stop();
    }
}


Erläuterung:

Hier dient Fahrzeug als Abstraktion, die angibt, welche Aktionen ausgeführt werden müssen (z. B. Starten und Stoppen), aber nicht definiert, wie diese Aktionen ausgeführt werden sollen. Die Klassen Car und Bike implementieren diese Methoden nach ihrer eigenen Logik. Dieses Design ermöglicht das einfache Hinzufügen neuer Fahrzeugtypen, wie z. B. LKW, ohne den vorhandenen Code zu ändern.

Neues Fahrzeug hinzufügen: LKW
Um ein neues Fahrzeug hinzuzufügen, müssen Sie lediglich eine Truck-Klasse erstellen, die die Fahrzeugschnittstelle implementiert und eine eigene Implementierung der Methoden start() und stop() bereitstellt.

Java-Code für LKW:


class Truck implements Vehicle {
    public void start() {
        System.out.println("Truck started");
    }
    public void stop() {
        System.out.println("Truck stopped");
    }
}


Nutzung von LKW in der Hauptklasse ohne Änderungen:
Um nun den Truck in die Main-Klasse aufzunehmen, können Sie eine Instanz von Truck erstellen und ihn als Fahrzeug verwenden. Es sind keine Änderungen an der Main-Klasse oder anderen Teilen des Codes erforderlich.

Java-Code für Hauptklasse:


<p>public class Main {<br>
    public static void main(String[] args) {<br>
        Vehicle car = new Car(); // Car as Vehicle<br>
        car.start();<br>
        car.stop();</p>
<div class="highlight js-code-highlight">
<pre class="highlight plaintext">    Vehicle bike = new Bike(); // Bike as Vehicle
    bike.start();
    bike.stop();

    // Adding Truck
    Vehicle truck = new Truck(); // Truck as Vehicle
    truck.start();
    truck.stop();
}

}

Ausgabe:
Code kopieren
Auto gestartet
Auto hat angehalten
Fahrrad gestartet
Fahrrad hat angehalten
LKW gestartet
LKW hat angehalten

Vollbildmodus aufrufen Vollbildmodus verlassen




Explanation:

Here, the Truck has been added without making any changes to the existing code. The Truck class simply implements its own versions of the start() and stop() functions according to the Vehicle interface. There was no need to modify the Main class or any other part of the application. This demonstrates how the Dependency Inversion Principle (DIP) promotes flexibility and maintainability in code.

Benefits of DIP:

  • Scalability: New classes (like Truck) can be easily added to the system without affecting existing components.

  • Maintainability: The Main class and other high-level modules do not need to be modified when new features or vehicles are introduced.

  • Flexibility: It is possible to add new vehicles without relying on existing ones, allowing for easier integration of new functionality.

By adhering to the Dependency Inversion Principle, the system remains extensible and maintainable through the use of abstractions.

Importance of DIP:

In this context, Car, Bike, and Truck do not depend directly on the Main class. Instead, the Main class relies solely on the Vehicle abstraction. This means that if a new vehicle type is introduced, there is no need to make changes to the Main class. As a result, the code is much easier to maintain, and adaptability is significantly enhanced.

This approach not only reduces the risk of introducing bugs during modifications but also encourages better design practices by promoting loose coupling between components.

Example 2:

Let's say you want to create a notification system that can send different types of notifications, such as Email, SMS, or Push Notifications. If you directly rely on the Email or SMS classes, adding a new notification method would require changes throughout your code, violating the Dependency Inversion Principle (DIP).

Solution:

We will create an abstraction called Notifier, which will only specify what needs to be done (send notification) without defining how to do it. Different notifier classes (Email, SMS, Push) will implement this functionality in their own way.

JavaScript Code:

<br>
 // Abstraction: Notifier<br>
class Notifier {<br>
    sendNotification(message) {<br>
        throw new Error("Method not implemented.");<br>
    }<br>
}

<p>// EmailNotifier implements Notifier<br>
class EmailNotifier extends Notifier {<br>
    sendNotification(message) {<br>
        console.log(Sending email: ${message});<br>
    }<br>
}</p>

<p>// SMSNotifier implements Notifier<br>
class SMSNotifier extends Notifier {<br>
    sendNotification(message) {<br>
        console.log(Sending SMS: ${message});<br>
    }<br>
}</p>

<p>// PushNotifier implements Notifier<br>
class PushNotifier extends Notifier {<br>
    sendNotification(message) {<br>
        console.log(Sending Push Notification: ${message});<br>
    }<br>
}</p>

<p>// Usage<br>
function sendAlert(notifier, message) {<br>
    notifier.sendNotification(message);<br>
}</p>

<p>// Test different notifiers<br>
const emailNotifier = new EmailNotifier();<br>
const smsNotifier = new SMSNotifier();<br>
const pushNotifier = new PushNotifier();</p>

<p>sendAlert(emailNotifier, "Server is down!");  // Sending email<br>
sendAlert(smsNotifier, "Server is down!");  // Sending SMS<br>
sendAlert(pushNotifier,"Server is down!"); // Sending Push Notification</p>




Explanation:

  • Notifier is the abstraction that specifies that a notification needs to be sent.

  • EmailNotifier, SMSNotifier, and PushNotifier implement the Notifier rules in their own ways.

  • The sendAlert function only depends on the Notifier abstraction, not on any specific notifier. Therefore, if we want to add a new notifier, there will be no need to change the existing code.

Why DIP is Important Here:

To add a new notification method (like WhatsApp), we simply need to create a new class that implements Notifier, and the rest of the code will remain unchanged.

Example 3:

Let’s say you are creating an e-commerce site where payments need to be processed using various payment gateways (like PayPal and Stripe). If you directly rely on PayPal or Stripe, making changes or adding a new gateway would require significant alterations to your code, violating the Dependency Inversion Principle (DIP).

Solution:

We will create an abstraction called PaymentGateway. Any payment gateway will operate according to this abstraction, so adding a new gateway will not require changes to other parts of the code.

JavaScript Code:

<br>
 // Abstraction: PaymentGateway<br>
class PaymentGateway {<br>
    processPayment(amount) {<br>
        throw new Error("Method not implemented.");<br>
    }<br>
}

<p>// PayPal class implements PaymentGateway<br>
class PayPal extends PaymentGateway {<br>
    processPayment(amount) {<br>
        console.log(Processing $${amount} payment through PayPal);<br>
    }<br>
}</p>

<p>// Stripe class implements PaymentGateway<br>
class Stripe extends PaymentGateway {<br>
    processPayment(amount) {<br>
        console.log(Processing $${amount} payment through Stripe);<br>
    }<br>
}</p>

<p>// Usage<br>
function processOrder(paymentGateway, amount) {<br>
    paymentGateway.processPayment(amount);<br>
}</p>

<p>// Test different payment gateways<br>
const paypal = new PayPal();<br>
const stripe = new Stripe();</p>

<p>processOrder(paypal, 100);  // Processing $100 payment through PayPal<br>
processOrder(stripe, 200);  // Processing $200 payment through Stripe</p>




Explanation:

  • PaymentGateway is an abstraction that specifies the requirement to process payments.

  • The PayPal and Stripe classes implement this abstraction in their own ways.

  • The processOrder function only depends on the PaymentGateway abstraction, so if you want to add a new gateway (like Bitcoin), you don’t need to make any changes to the existing code.

DIP is Important Here:

If you need to add a new payment gateway, you simply create a new class that implements the PaymentGateway, and there will be no changes to the core code. This makes the code more maintainable and flexible.

DIP কেন গুরুত্বপূর্ণ?

1. Maintainability: নতুন কিছু যোগ করতে বা পরিবর্তন করতে হলে বড় কোড পরিবর্তন করতে হয় না। DIP মেনে abstraction ব্যবহার করে সিস্টেমকে সহজে মেইনটেইন করা যায়।

2. Flexibility: নতুন ফিচার যোগ করা অনেক সহজ হয়ে যায় কারণ high-level module এবং low-level module আলাদা থাকে।

3. Scalability: DIP এর মাধ্যমে সিস্টেমে নতুন ফিচার বা ফাংশনালিটি যোগ করা সহজ এবং দ্রুত করা যায়।

4. Decoupling: High-level module এবং low-level module সরাসরি একে অপরের উপর নির্ভর না করে abstraction এর মাধ্যমে কাজ করে, যা সিস্টেমের dependencies কমিয়ে দেয়।

Dependency Inversion Principle(DIP) in React

The Dependency Inversion Principle (DIP) can make React applications more modular and maintainable. The core idea of DIP is that high-level components should not depend on low-level components or specific implementations; instead, they should work with a common rule or structure (abstraction).

To implement this concept in React, we typically use props, context, or custom hooks. As a result, components are not directly tied to specific data or logic but operate through abstractions, which facilitates easier changes or the addition of new features in the future.

Example:

  • If you are building an authentication system, instead of directly relying on Firebase, create an abstraction called AuthService. Any authentication service (like Firebase or Auth0) can work according to this abstraction, allowing you to change the authentication system without altering the entire codebase.

  • Similarly, when making API calls, instead of depending directly on fetch or Axios, you can use an abstraction called ApiService. This ensures that the rules for making API calls remain consistent while allowing changes to the implementation.

By adhering to DIP, your components remain reusable, flexible, and maintainable.

Example 1: Authentication Service

You are building a React application where users need to log in using various authentication services (like Firebase and Auth0). If you directly work with Firebase or Auth0, changing the service would require significant code modifications.

Solution:

By using the AuthService abstraction and adhering to the Dependency Inversion Principle (DIP), you can create an authentication system that allows different authentication services to work together.

JSX Code:

<br>
 import React, { createContext, useContext } from "react";

<p>// Abstraction: AuthService<br>
const AuthServiceContext = createContext();</p>

<p>// FirebaseAuth implementation<br>
const firebaseAuth = {<br>
  login: (username, password) => {<br>
    console.log(Logging in ${username} using Firebase);<br>
  },<br>
  logout: () => {<br>
    console.log("Logging out from Firebase");<br>
  }<br>
};</p>

<p>// Auth0 implementation<br>
const auth0Auth = {<br>
  login: (username, password) => {<br>
    console.log(Logging in ${username} using Auth0);<br>
  },<br>
  logout: () => {<br>
    console.log("Logging out from Auth0");<br>
  }<br>
};</p>

<p>// AuthProvider component for dependency injection<br>
const AuthProvider = ({ children, authService }) => {<br>
  return (<br>
    fe05d5eac77346ea84deedde2c5fa67a<br>
      {children}<br>
    5d1ea9ac180cbe596576b5ba761237c4<br>
  );<br>
};</p>

<p>// Custom hook to access the AuthService<br>
const useAuthService = () => {<br>
  return useContext(AuthServiceContext);<br>
};</p>

<p>// Login component that depends on abstraction<br>
const Login = () => {<br>
  const authService = useAuthService();</p>

<p>const handleLogin = () => {<br>
    authService.login("username", "password");<br>
  };</p>

<p>return c883a3f67e1b99af028c932340f2d8acLogin65281c5ac262bf6d81768915a4a77ac0;<br>
};</p>

<p>// App component<br>
const App = () => {<br>
  return (<br>
    71e940f84cca9479943a63f90ece4428<br>
      c853468068e5ce2b25356d786316be3d<br>
    c76493c01919e3cc2f1554665d0ca98b<br>
  );<br>
};</p>

<p>export default App;</p>




Explanation:

  • AuthServiceContext acts as a context that serves as an abstraction for the authentication service.

  • The AuthProvider component is responsible for injecting a specific authentication service (either Firebase or Auth0) into the context, allowing any child components to access this service.

  • The Login component does not directly depend on any specific service; instead, it uses the useAuthService hook to access the authentication abstraction. This means that if you change the authentication service in the AuthProvider, the Login component will remain unchanged and continue to work seamlessly.

This design pattern adheres to the Dependency Inversion Principle (DIP), promoting flexibility and maintainability in the application.

Example 2: API Service Layer with Functional Components

You are making various API calls using fetch or Axios. If you work directly with fetch or Axios, changing the API service would require numerous code changes.

Solution:

We will create an abstraction called ApiService, which will adhere to the Dependency Inversion Principle (DIP) for making API calls. This way, if the service changes, the components will remain unchanged.

JSX Code:

<br>
 import React, { createContext, useContext } from "react";

<p>// Abstraction: ApiService<br>
const ApiServiceContext = createContext();</p>

<p>// Fetch API implementation<br>
const fetchApiService = {<br>
  get: async (url) => {<br>
    const response = await fetch(url);<br>
    return response.json();<br>
  },<br>
  post: async (url, data) => {<br>
    const response = await fetch(url, {<br>
      method: "POST",<br>
      body: JSON.stringify(data),<br>
      headers: { "Content-Type": "application/json" }<br>
    });<br>
    return response.json();<br>
  }<br>
};</p>

<p>// Axios API implementation (for example purposes, similar API interface)<br>
const axiosApiService = {<br>
  get: async (url) => {<br>
    const response = await axios.get(url);<br>
    return response.data;<br>
  },<br>
  post: async (url, data) => {<br>
    const response = await axios.post(url, data);<br>
    return response.data;<br>
  }<br>
};</p>

<p>// ApiProvider for injecting the service<br>
const ApiProvider = ({ children, apiService }) => {<br>
  return (<br>
    6b264275a8e320357bd39a49ba9ac4e1<br>
      {children}<br>
    8cab631425ec8c7bf14965faddaa1658<br>
  );<br>
};</p>

<p>// Custom hook to use the ApiService<br>
const useApiService = () => {<br>
  return useContext(ApiServiceContext);<br>
};</p>

<p>// Component using ApiService abstraction<br>
const DataFetcher = () => {<br>
  const apiService = useApiService();</p>

<p>const fetchData = async () => {<br>
    const data = await apiService.get("https://jsonplaceholder.typicode.com/todos");<br>
    console.log(data);<br>
  };</p>

<p>return 30e510242e32dc21a8f77857377a72f1Fetch Data65281c5ac262bf6d81768915a4a77ac0;<br>
};</p>

<p>// App component<br>
const App = () => {<br>
  return (<br>
    728e439b6de9082b69fb30a1e596e6b4<br>
      9823bd4f87bdf0bf7d485827fd44f5aa<br>
    5ad2b31ff55d0b689ab3f4e12587c807<br>
  );<br>
};</p>

<p>export default App;</p>




Explanation:

  • ApiServiceContext is a context that serves as an abstraction for making API calls.

  • The ApiProvider component injects a specific API service.

  • The DataFetcher component does not directly depend on fetch or Axios; it relies on the abstraction instead. If you need to switch from fetch to Axios, you won't need to modify the component.

Example 3: Form Validation with Functional Components

You have created a React app where form validation is required. If you write the validation logic directly inside the component, any changes to the validation logic would require modifications throughout the code.

Solution:

We will create an abstraction called FormValidator. Different validation libraries (such as Yup or custom validation) will work according to this abstraction.

JSX Code:

<br>
 import React from "react";

<p>// Abstraction: FormValidator<br>
const FormValidatorContext = React.createContext();</p>

<p>// Yup validator implementation<br>
const yupValidator = {<br>
  validate: (formData) => {<br>
    console.log("Validating using Yup");<br>
    return true; // Dummy validation<br>
  }<br>
};</p>

<p>// Custom validator implementation<br>
const customValidator = {<br>
  validate: (formData) => {<br>
    console.log("Validating using custom logic");<br>
    return true; // Dummy validation<br>
  }<br>
};</p>

<p>// FormValidatorProvider for injecting the service<br>
const FormValidatorProvider = ({ children, validatorService }) => {<br>
  return (<br>
    8553961e3a27fe594a74ff19d52fc2be<br>
      {children}<br>
    8561d8edc91149f5ea3a2f97d62455cc<br>
  );<br>
};</p>

<p>// Custom hook to use the FormValidator<br>
const useFormValidator = () => {<br>
  return React.useContext(FormValidatorContext);<br>
};</p>

<p>// Form component using FormValidator abstraction<br>
const Form = () => {<br>
  const validator = useFormValidator();</p>

<p>const handleSubmit = () => {<br>
    const formData = { name: "John Doe" };<br>
    const isValid = validator.validate(formData);<br>
    console.log("Is form valid?", isValid);<br>
  };</p>

<p>return 5f246b67d575bdf323b33dd46abe4228Submit65281c5ac262bf6d81768915a4a77ac0;<br>
};</p>

<p>// App component<br>
const App = () => {<br>
  return (<br>
    0f14f915bb98fbf6f184fe80b11facb6<br>
      28bedc64ab01fc2a6e99f9b156cc3159<br>
    4f68b725a5460ba517315003078e8baf<br>
  );<br>
};</p>

<p>export default App;</p>




Explanation:

  • FormValidatorContext acts as an abstraction for form validation.

  • The FormValidatorProvider component injects a specific validation logic (e.g., Yup or custom logic).

  • The Form component does not depend directly on Yup or custom validation. Instead, it works with the abstraction. If the validation logic needs to be changed, such as switching from Yup to custom validation, the Form component will remain unchanged.

Disadvantages of Dependency Inversion Principle (DIP):

While the Dependency Inversion Principle (DIP) is a highly beneficial design principle, it also comes with some limitations or disadvantages. Below are some of the key drawbacks of using DIP:

1. Increased Complexity: Following DIP requires creating additional interfaces or abstract classes. This increases the structure's complexity, especially in smaller projects. Directly using low-level modules makes the code simpler, but adhering to DIP requires introducing multiple abstractions, which can add complexity.

2. Overhead of Managing Dependencies: Since high-level and low-level modules are not directly connected, additional design patterns like dependency injection or context are needed to manage dependencies. This increases the maintenance overhead of the project.

3. Unnecessary for Small Projects: In smaller projects or in cases with fewer dependencies or low complexity, using DIP can be unnecessary. Implementing DIP creates additional abstractions that make the code more complicated, while directly using low-level modules can be simpler and more effective.

4. Performance Overhead: By introducing abstractions between high-level and low-level modules, there can be some performance overhead, especially if there are many abstraction layers. Each abstraction adds extra processing, which can slightly impact performance.

5. Misuse of Abstraction: Excessive or incorrect use of abstraction can reduce the readability and maintainability of the code. If abstractions are not thoughtfully implemented, they can create more disadvantages than the intended benefits of DIP.

6. Harder to Debug: Due to the use of abstractions and interfaces, debugging can become more challenging. Without directly working with the implementation, identifying where a problem originates from can take more time.

7. Dependency Injection Tools Required: Implementing DIP often requires using dependency injection frameworks or tools, which take time and effort to learn. Additionally, the use of these frameworks increases the complexity of the project.

Conclusion:

Although DIP is a powerful and beneficial principle, it does have its limitations. In smaller projects or less complex contexts, adhering to DIP may be unnecessary. Therefore, proper analysis is needed to determine when and where to apply this principle for the best results.

? Connect with me on LinkedIn:

I regularly share insights on JavaScript, Node.js, React, Next.js, software engineering, data structures, algorithms, and more. Let’s connect, learn, and grow together!

Follow me: Nozibul Islam

Das obige ist der detaillierte Inhalt vonD – Abhängigkeitsinversionsprinzip (DIP). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:Variablen in Schnittstellen und ErweiterungenNächster Artikel:Variablen in Schnittstellen und Erweiterungen

In Verbindung stehende Artikel

Mehr sehen