Polare vs. Pandas: Was ist der Unterschied?
Wenn Sie über die neuesten Python-Entwicklungen auf dem Laufenden sind, haben Sie wahrscheinlich schon von Polars gehört, einer neuen Bibliothek für die Arbeit mit Daten. Während pandas seit langem die Bibliothek der Wahl ist, sorgt Polars für Aufsehen, insbesondere bei der Verarbeitung großer Datenmengen. Was ist also das große Problem mit Polars? Wie unterscheidet es sich von Pandas? Lass es uns aufschlüsseln.
Was sind Polaren?
Polars ist eine kostenlose Open-Source-Bibliothek, die auf Rust (einer schnellen, modernen Programmiersprache) basiert. Es soll Python-Entwicklern helfen, Daten schneller und effizienter zu verarbeiten. Betrachten Sie es als eine Alternative zu Pandas, die glänzt, wenn Sie mit wirklich großen Datensätzen arbeiten, mit denen Pandas möglicherweise Probleme haben.
Warum wurden Polars geschaffen?
Pandas gibt es schon seit Jahren und viele Menschen nutzen es immer noch gerne. Da die Daten jedoch immer größer und komplexer wurden, zeigten Pandas einige Schwächen. Ritchie Vink, der Erfinder von Polars, bemerkte diese Probleme und beschloss, etwas schnelleres und effizienteres zu entwickeln. Sogar Wes McKinney, der Erfinder der Pandas, gab in einem Blogbeitrag mit dem Titel „10 Dinge, die ich an Pandas hasse“ zu, dass Pandas einige Verbesserungen gebrauchen könnten, insbesondere bei großen Datensätzen.
Hier kommt Polars ins Spiel: Es ist blitzschnell und speichereffizient – zwei Dinge, mit denen Pandas beim Umgang mit großen Datenmengen zu kämpfen haben.
Hauptunterschiede: Polars vs. Pandas
1. Geschwindigkeit
Polars ist sehr schnell. Tatsächlich zeigen einige Benchmarks, dass Polars bis zu 5–10 Mal schneller als Pandas sein können, wenn sie häufige Vorgänge wie das Filtern oder Gruppieren von Daten ausführen. Dieser Geschwindigkeitsunterschied macht sich besonders bemerkbar, wenn Sie mit großen Datenmengen arbeiten.
2. Speichernutzung
Polars ist viel effizienter, wenn es um das Gedächtnis geht. Es verbraucht etwa 5 bis 10 Mal weniger Speicher als Pandas, was bedeutet, dass Sie mit viel größeren Datensätzen arbeiten können, ohne auf Speicherprobleme zu stoßen.
3. Lazy Execution
Polars verwendet etwas namens Lazy Execution, was bedeutet, dass nicht jede Operation sofort ausgeführt wird, während Sie sie schreiben. Stattdessen wartet es, bis Sie eine Reihe von Operationen geschrieben haben, und führt sie dann alle auf einmal aus. Dies hilft dabei, Dinge zu optimieren und schneller auszuführen. Pandas hingegen führt jeden Vorgang sofort aus, was bei großen Aufgaben langsamer sein kann.
4. Multithreading
Polars kann mehrere CPU-Kerne gleichzeitig zur Datenverarbeitung nutzen, was die Verarbeitung großer Datensätze noch schneller macht. Pandas ist größtenteils Single-Threaded, was bedeutet, dass es jeweils nur einen CPU-Kern verwenden kann, was die Geschwindigkeit verlangsamt, insbesondere bei großen Datenmengen.
Warum ist Polars so schnell?
Polars ist aus mehreren Gründen schnell:
- Es ist in Rust integriert, einer Programmiersprache, die für ihre Geschwindigkeit und Sicherheit bekannt ist, was sie äußerst effizient macht.
- Es verwendet Apache Arrow, eine spezielle Methode zum Speichern von Daten im Speicher, die die Arbeit mit verschiedenen Programmiersprachen einfacher und schneller macht.
Diese Kombination aus Rust und Apache Arrow verschafft Polars einen Vorsprung gegenüber Pandas, wenn es um Geschwindigkeit und Speichernutzung geht.
Stärken und Grenzen von Pandas
Während sich Polars hervorragend für Big Data eignet, hat Pandas immer noch seinen Platz. Pandas funktioniert wirklich gut mit kleinen bis mittelgroßen Datensätzen und gibt es schon so lange, dass es jede Menge Funktionen und eine riesige Community hat. Wenn Sie also nicht mit großen Datensätzen arbeiten, sind Pandas möglicherweise immer noch die beste Option.
Je größer Ihre Datensätze werden, desto mehr Speicher verbrauchen Pandas und werden langsamer, was Polars in solchen Situationen zu einer besseren Wahl macht.
Wann sollten Sie Polaren verwenden?
Sie sollten die Verwendung von Polaren in Betracht ziehen, wenn:
- Sie arbeiten mit großen Datensätzen (Millionen oder Milliarden Zeilen).
- Sie benötigen Schnelligkeit und Leistung, um Ihre Aufgaben schnell zu erledigen.
- Sie haben Speicherbeschränkungen und müssen bei der RAM-Nutzung sparen.
Abschluss
Sowohl Eisbären als auch Pandas haben ihre Stärken. Wenn Sie mit kleinen bis mittleren Datensätzen arbeiten, ist Pandas immer noch ein großartiges Werkzeug. Wenn Sie jedoch mit großen Datensätzen arbeiten und etwas schnelleres und speichereffizienteres benötigen, ist Polars auf jeden Fall einen Versuch wert. Seine Leistungssteigerungen dank Rust und Apache Arrow machen es zu einer fantastischen Option für datenintensive Aufgaben.
Da sich Python weiterentwickelt, könnte Polars zum neuen Goto-Tool für den Umgang mit Big Data werden.
Viel Spaß beim Codieren? ?
Das obige ist der detaillierte Inhalt vonPolars vs. Pandas Eine neue Ära der Datenrahmen in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version