Heim  >  Artikel  >  Java  >  Xor von N Zahlen

Xor von N Zahlen

Patricia Arquette
Patricia ArquetteOriginal
2024-09-21 20:15:32282Durchsuche

Xor of N numbers

Gegeben eine ganze Zahl N, finden Sie den Exor des Bereichs 1 bis N
exor von 1 ^ 2 ^ 3 ^4 ^.....N;

Brute-Force-Ansatz:
Tc:O(n)
Sc:O(1)

public int findExor(int N){

        //naive/brute force approach:
        int val  = 0;
        for(int i=1;i<5;i++){
            val =  val^ i;
        }
        return val;
    }

Optimaler Ansatz:
Tc:O(1)
Sc:O(1)

    public int getExor(int N){
        //better approach

        /**
         * one thing to observe is 
         * 1 = 001  = 1
         * 1 ^2 = 001 ^ 010 = 011=       3
         * 1^2^3 = 011 ^ 011 = 0=        0
         * 1^2^3^4 = 000^100 = 100=      4
         * 1^2^3^4^5 = 100^101 = 001=    1
         * 1^2^3^4^5^6 = 001^110 =111=   7
         * 1^2^3^4^5^6^7 = 111^111=000=  0
         * 
         * what we can observer is : 
         * 
         * N%4==0 then result is: N
         * N%4 ==1 then result is: 1
         * N%4 ==2 then result is: N+1
         * N%4==3 then result is: 0
         * 
         * */
         if(N%4==0) return N;
         else if(N%4 ==1) return 1;
         else if(N%4==2) return N+1;
         else return 0;

    }

Was wäre, wenn wir den Exor zwischen Bereichen wie L und R finden müssten?
Finden Sie beispielsweise ein Exor zwischen den Zahlen 4 und 7, d. h. 4^5^6^7.

Um dieses Problem zu lösen, können wir die gleiche optimale Lösung wie oben bei getExor() nutzen

Zuerst erhalten wir exor bis L-1, d. h. getExor(L-1) = 1 ^ 2 ^ 3 (da L-1 = 3)......Gleichung(1)

Dann finden wir getExor(R) = 1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7 ----Gleichung(2)

das Endlich,

Result  = equation(1) ^ equation(2)
        = (1 ^ 2 ^ 3) ^ (1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7)
        = (4^5^6^7)

public int findExorOfRange(int L, int R){
        return getExor(L-1) ^ getExor(R);
    }

public int getExor(int N){
        //better approach

        /**
         * one thing to observe is 
         * 1 = 001  = 1
         * 1 ^2 = 001 ^ 010 = 011=       3
         * 1^2^3 = 011 ^ 011 = 0=        0
         * 1^2^3^4 = 000^100 = 100=      4
         * 1^2^3^4^5 = 100^101 = 001=    1
         * 1^2^3^4^5^6 = 001^110 =111=   7
         * 1^2^3^4^5^6^7 = 111^111=000=  0
         * 
         * what we can observer is : 
         * 
         * N%4==0 then result is: N
         * N%4 ==1 then result is: 1
         * N%4 ==2 then result is: N+1
         * N%4==3 then result is: 0
         * 
         * */
         if(N%4==0) return N;
         else if(N%4 ==1) return 1;
         else if(N%4==2) return N+1;
         else return 0;

    }

Das obige ist der detaillierte Inhalt vonXor von N Zahlen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn