Heim >Backend-Entwicklung >Golang >Erstellen Sie Ihren eigenen SMTP-Server in Go
Bei Valyent entwickeln wir Open-Source-Software für Entwickler.
Im Rahmen dieser Mission entwickeln wir derzeit Ferdinand, unseren E-Mail-Versanddienst für Entwickler (derzeit in der Alpha-Phase).
Die E-Mail-Infrastruktur basiert auf mehreren Schlüsselprotokollen, wobei das wichtigste folgendes ist:
Im heutigen Artikel konzentrieren wir uns auf den Aufbau unseres eigenen SMTP-Ausgangsservers, der den Ansatz widerspiegelt, den wir mit Ferdinand gewählt haben. Dadurch erlangen wir ein tiefes Verständnis der wichtigsten Komponente der E-Mail-Versandinfrastruktur.
„Was ich nicht erschaffen kann, verstehe ich nicht.“
– Richard Feynman
Indem Sie einen ausgehenden SMTP-Server von Grund auf neu erstellen, können Sie einen Einblick in die E-Mail-Zustellung gewinnen, den die meisten Entwickler nie erreichen.
Um fortzufahren, werden wir die Programmiersprache Go zusammen mit den tollen Mail-Bibliotheken von Simon Ser verwenden. Wir entmystifizieren den Prozess, zeigen Ihnen, wie Sie E-Mails an andere Server senden und erklären sogar Schlüsselkonzepte wie SPF, DKIM und DMARC, die die Zustellbarkeit gewährleisten.
Am Ende verfügen Sie zumindest über ein tieferes Verständnis der E-Mail-Infrastruktur, auch wenn Sie noch keinen produktionsbereiten SMTP-Server haben.
Bevor wir uns mit dem Code befassen, schauen wir uns an, was SMTP ist und wie es funktioniert. SMTP (Simple Mail Transfer Protocol) ist das Standardprotokoll zum Senden von E-Mails über das Internet. Es handelt sich um ein relativ einfaches, textbasiertes Protokoll, das nach einem Client-Server-Modell arbeitet.
Das SMTP-Protokoll verwendet Befehle. Jeder Befehl in SMTP dient einem bestimmten Zweck im E-Mail-Übertragungsprozess. Sie ermöglichen es Servern, sich vorzustellen, Absender und Empfänger festzulegen, den eigentlichen E-Mail-Inhalt zu übertragen und die gesamte Kommunikationssitzung zu verwalten. Stellen Sie sich diese Befehle als eine strukturierte Konversation zwischen zwei E-Mail-Servern vor, wobei jeder Befehl eine bestimmte Aussage oder Frage in dieser Konversation darstellt.
Wenn Sie einen SMTP-Server erstellen, erstellen Sie im Wesentlichen ein Programm, das diese Sprache fließend sprechen kann, eingehende Befehle interpretiert und angemessen reagiert sowie beim Senden von E-Mails die richtigen Befehle ausgibt.
Lassen Sie uns die wichtigsten SMTP-Befehle untersuchen, um zu sehen, wie sich dieses Gespräch entwickelt:
DATA From: john@example.com To: jane@example.com Subject: Hello This is the body of the email. .
Eine typische SMTP-Konversation könnte so aussehen:
C: EHLO client.example.com S: 250-smtp.example.com Hello client.example.com S: 250-SIZE 14680064 S: 250-AUTH LOGIN PLAIN S: 250 HELP C: MAIL FROM:<sender@example.com> S: 250 OK C: RCPT TO:<recipient@example.com> S: 250 OK C: DATA S: 354 Start mail input; end with <CRLF>.<CRLF> C: From: sender@example.com C: To: recipient@example.com C: Subject: Test Email C: C: This is a test email. C: . S: 250 OK: queued as 12345 C: QUIT S: 221 Bye
Authentifizierung ist ein entscheidender Aspekt von SMTP, insbesondere für ausgehende E-Mail-Server. Es hilft, unbefugte Nutzung des Servers zu verhindern und Spam zu reduzieren. In SMTP werden mehrere Authentifizierungsmethoden verwendet:
Here's an example of how PLAIN authentication looks in an SMTP conversation:
C: EHLO example.com S: 250-STARTTLS S: 250 AUTH PLAIN LOGIN C: AUTH PLAIN AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk S: 235 2.7.0 Authentication successful
In this example, AGVtYWlsQGV4YW1wbGUuY29tAHBhc3N3b3Jk is the base64-encoded version of \0email@example.com\0password.
When implementing authentication in your SMTP server, you'll need to:
Now, let's move on to implementing these concepts in our Go SMTP server.
Imagine sending a letter through the postal service without a return address or an official stamp. It might reach its destination, but there's a good chance it'll end up in the "suspicious mail" pile. In the digital world of email, we face a similar challenge.
How do we ensure our emails aren't just sent, but actually delivered and trusted?
Enter the holy trinity of email authentication: DKIM, SPF, and DMARC.
DKIM (DomainKeys Identified Mail) is like a wax seal on a medieval letter. It proves the email hasn't been tampered with during transit.
How it works:
Think of it as your email's passport, stamped and verified at each checkpoint.
Example DKIM DNS Record:
<selector>._domainkey.<domain>.<tld>. IN TXT "v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC3QEKyU1fSma0axspqYK5iAj+54lsAg4qRRCnpKK68hawSd8zpsDz77ntGCR0X2mHVvkHbX6dX...oIDAQAB"
Here, 'selector' is a unique identifier for this DKIM key, and the long string is your public key.
SPF (Sender Policy Framework) is like the bouncer at an exclusive club. It specifies which email servers are allowed to send emails on behalf of your domain.
How it works:
It's like saying, "If the email didn't come from one of these guys, it's not with us!"
Example SPF DNS Record:
<domain>.<tld>. IN TXT "v=spf1 ip4:192.0.2.0/24 include:_spf.google.com ~all"
This record says:
DMARC (Domain-based Message Authentication, Reporting & Conformance) is the wise judge that decides what happens to emails that fail DKIM or SPF checks.
How it works:
Think of DMARC as your email bouncer's rulebook and incident report.
Example DMARC DNS Record:
_dmarc.<domain>.<tld>. IN TXT "v=DMARC1; p=quarantine; rua=mailto:dmarc-reports@<domain>.<tld>"
This record says:
Together, DKIM, SPF, and DMARC form a powerful shield against email spoofing and phishing. They tell receiving servers, "This email is really from us, sent by someone we trust, and here's what to do if something seems fishy."
Implementing this trinity not only improves your email deliverability but also protects your domain's reputation. It's like having a state-of-the-art security system for your email infrastructure.
As we build our SMTP server, keeping these authentication methods in mind will be crucial for ensuring our emails don't just get sent, but actually reach their destination and are trusted when they arrive. Remember, when implementing these records on a production domain, start with permissive policies and gradually tighten them as you confirm everything is working correctly.
First, let's create a new directory for our project and initialize a Go module:
mkdir go-smtp-server cd go-smtp-server go mod init github.com/yourusername/go-smtp-server
We'll need a few dependencies for our SMTP server. Run the following commands:
go get github.com/emersion/go-smtp go get github.com/emersion/go-sasl go get github.com/emersion/go-msgauth
package main import ( "log" "time" "io" "github.com/emersion/go-smtp" ) func main() { s := smtp.NewServer(&Backend{}) s.Addr = ":2525" s.Domain = "localhost" s.WriteTimeout = 10 * time.Second s.ReadTimeout = 10 * time.Second s.MaxMessageBytes = 1024 * 1024 s.MaxRecipients = 50 s.AllowInsecureAuth = true log.Println("Starting server at", s.Addr) if err := s.ListenAndServe(); err != nil { log.Fatal(err) } } // Backend implements SMTP server methods. type Backend struct{} func (bkd *Backend) NewSession(_ *smtp.Conn) (smtp.Session, error) { return &Session{}, nil } // A Session is returned after EHLO. type Session struct{} // We'll implement the Session methods next
This creates an SMTP server, listening on the 2525 port, a convenient choice for development purposes, since this port doesn’t require administrative privileges, unlike the standard ports 25 (standard SMTP), 465 (TLS), 587 (STARTTLS).
The EHLO/HELO command is handled automatically by the go-smtp library. We don't need to implement it ourselves.
Add this method to the Session struct:
func (s *Session) Mail(from string, opts *smtp.MailOptions) error { fmt.Println("Mail from:", from) s.From = from return nil }
This method is called when the server receives a MAIL FROM command. It logs the sender's address and stores it in the session.
Add this method to the Session struct:
func (s *Session) Rcpt(to string) error { fmt.Println("Rcpt to:", to) s.To = append(s.To, to) return nil }
This method is called for each RCPT TO command. It logs the recipient's address and adds it to the list of recipients for this session.
Add this method to the Session struct:
import ( "fmt" "io" ) func (s *Session) Data(r io.Reader) error { if b, err := io.ReadAll(r); err != nil { return err } else { fmt.Println("Received message:", string(b)) // Here you would typically process the email return nil } }
This method is called when the server receives the DATA command. It reads the entire email message and logs it. In a real server, you would process the email here.
Add this method to the Session struct:
func (s *Session) AuthPlain(username, password string) error { if username != "testuser" || password != "testpass" { return fmt.Errorf("Invalid username or password") } return nil }
This implements a basic authentication mechanism. Note that this is for demonstration purposes only and should not be used in production.
Add this method to the Session struct:
func (s *Session) Reset() { s.From = "" s.To = []string{} }
This method is called when the server receives a RSET command. It resets the session state.
Add this method to the Session struct:
func (s *Session) Logout() error { return nil }
This method is called when the server receives a QUIT command. In this simple implementation, we don't need to do anything special.
Once we've received and processed an email, the next step is to send it to its destination. This involves two key steps: finding the recipient's mail server using MX (Mail Exchanger) records, and attempting to send the email using standard SMTP ports.
First, let's add a function to look up MX records:
import "net" func lookupMX(domain string) ([]*net.MX, error) { mxRecords, err := net.LookupMX(domain) if err != nil { return nil, fmt.Errorf("Error looking up MX records: %v", err) } return mxRecords, nil }
Next, let's create a function that attempts to send an email using different ports:
import ( "crypto/tls" "net/smtp" "strings" ) func sendMail(from string, to string, data []byte) error { domain := strings.Split(to, "@")[1] mxRecords, err := lookupMX(domain) if err != nil { return err } for _, mx := range mxRecords { host := mx.Host for _, port := range []int{25, 587, 465} { address := fmt.Sprintf("%s:%d", host, port) var c *smtp.Client var err error switch port { case 465: // SMTPS tlsConfig := &tls.Config{ServerName: host} conn, err := tls.Dial("tcp", address, tlsConfig) if err != nil { continue } c, err = smtp.NewClient(conn, host) case 25, 587: // SMTP or SMTP with STARTTLS c, err = smtp.Dial(address) if err != nil { continue } if port == 587 { if err = c.StartTLS(&tls.Config{ServerName: host}); err != nil { c.Close() continue } } } if err != nil { continue } // SMTP conversation if err = c.Mail(from); err != nil { c.Close() continue } if err = c.Rcpt(to); err != nil { c.Close() continue } w, err := c.Data() if err != nil { c.Close() continue } if _, err := w.Write(data); err != nil { c.Close() continue } err = w.Close() if err != nil { c.Close() continue } c.Quit() return nil } } return fmt.Errorf("Failed to send email to %s", to) }
This function does the following:
Now, let's modify our Data method in the Session struct to use this new sendMail function:
func (s *Session) Data(r io.Reader) error { if data, err := io.ReadAll(r); err != nil { return err } else { fmt.Println("Received message:", string(data)) for _, recipient := range s.To { if err := sendMail(s.From, recipient, data); err != nil { fmt.Printf("Failed to send email to %s: %v", recipient, err) } else { fmt.Printf("Email sent successfully to %s", recipient) } } return nil } }
This implementation will attempt to send the received email to each recipient using the appropriate mail server and port.
Now, let's add DKIM signing to our email sending process. First, we need to import the necessary packages and set up our DKIM options:
import ( // ... other imports ... "crypto/rsa" "crypto/x509" "encoding/pem" "github.com/emersion/go-msgauth/dkim" ) // Load your DKIM private key var dkimPrivateKey *rsa.PrivateKey func init() { // Load your DKIM private key from a file privateKeyPEM, err := ioutil.ReadFile("path/to/your/private_key.pem") if err != nil { log.Fatalf("Failed to read private key: %v", err) } block, _ := pem.Decode(privateKeyPEM) if block == nil { log.Fatalf("Failed to parse PEM block containing the private key") } privateKey, err := x509.ParsePKCS1PrivateKey(block.Bytes) if err != nil { log.Fatalf("Failed to parse private key: %v", err) } dkimPrivateKey = privateKey } // DKIM options var dkimOptions = &dkim.SignOptions{ Domain: "example.com", Selector: "default", Signer: dkimPrivateKey, }
Next, let's modify our sendMail function to include DKIM signing:
func sendMail(from string, to string, data []byte) error { // ... [previous MX lookup code] ... for _, mx := range mxRecords { host := mx.Host for _, port := range []int{25, 587, 465} { // ... [previous connection code] ... // DKIM sign the message var b bytes.Buffer if err := dkim.Sign(&b, bytes.NewReader(data), dkimOptions); err != nil { return fmt.Errorf("Failed to sign email with DKIM: %v", err) } signedData := b.Bytes() // SMTP conversation if err = c.Mail(from); err != nil { c.Close() continue } if err = c.Rcpt(to); err != nil { c.Close() continue } w, err := c.Data() if err != nil { c.Close() continue } _, err = w.Write(signedData) // Use the DKIM signed message if err != nil { c.Close() continue } err = w.Close() if err != nil { c.Close() continue } c.Quit() return nil } } return fmt.Errorf("Failed to send email to %s", to) }
In this updated sendMail function:
This implementation will add a DKIM signature to your outgoing emails, which will help improve deliverability and authenticity of your emails.
Denken Sie daran, „path/to/your/private_key.pem“ durch den tatsächlichen Pfad zu Ihrem privaten DKIM-Schlüssel zu ersetzen und die Domäne und den Selektor in dkimOptions so zu aktualisieren, dass sie mit Ihrem DKIM-DNS-Eintrag übereinstimmen.
Während diese Implementierung einen grundlegenden funktionierenden SMTP-Server bereitstellt, der E-Mails empfangen und senden kann, gibt es mehrere wichtige Überlegungen für einen produktionsbereiten Server:
Wir hoffen, dass Sie durch die Lektüre dieses Beitrags viel gelernt haben. Um mehr über das Versenden von E-Mails zu erfahren, schauen Sie sich gerne das GitHub-Repository von Ferdinand an und erkunden Sie den Code.
Das obige ist der detaillierte Inhalt vonErstellen Sie Ihren eigenen SMTP-Server in Go. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!