Heim >Backend-Entwicklung >Python-Tutorial >Themenmodellierung mit Topc: Dreyfus, AI und Wordclouds

Themenmodellierung mit Topc: Dreyfus, AI und Wordclouds

王林
王林Original
2024-07-18 04:36:21501Durchsuche

Mit Python Erkenntnisse aus PDFs extrahieren: Ein umfassender Leitfaden

Dieses Skript demonstriert einen leistungsstarken Workflow für die Verarbeitung von PDFs, das Extrahieren von Text, die Tokenisierung von Sätzen und die Themenmodellierung mit Visualisierung, der auf eine effiziente und aufschlussreiche Analyse zugeschnitten ist.

Übersicht über Bibliotheken

  • Betriebssystem: Bietet Funktionen zur Interaktion mit dem Betriebssystem.
  • matplotlib.pyplot: Wird zum Erstellen statischer, animierter und interaktiver Visualisierungen in Python verwendet.
  • nltk: Natural Language Toolkit, eine Suite von Bibliotheken und Programmen für die Verarbeitung natürlicher Sprache.
  • Pandas: Datenmanipulations- und Analysebibliothek.
  • pdftotext: Bibliothek zum Konvertieren von PDF-Dokumenten in einfachen Text.
  • re: Stellt Operationen zum Abgleich regulärer Ausdrücke bereit.
  • seaborn: Statistische Datenvisualisierungsbibliothek basierend auf matplotlib.
  • nltk.tokenize.sent_tokenize: NLTK-Funktion zum Tokenisieren einer Zeichenfolge in Sätze.
  • top2vec: Bibliothek für Themenmodellierung und semantische Suche.
  • wordcloud: Bibliothek zum Erstellen von Wortwolken aus Textdaten.

Ersteinrichtung

Module importieren

import os
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pdftotext
import re
import seaborn as sns
from nltk.tokenize import sent_tokenize
from top2vec import Top2Vec
from wordcloud import WordCloud
from cleantext import clean

Stellen Sie als Nächstes sicher, dass der Punkt-Tokenizer heruntergeladen wird:

nltk.download('punkt')

Textnormalisierung

def normalize_text(text):
    """Normalize text by removing special characters and extra spaces,
    and applying various other cleaning options."""

    # Apply the clean function with specified parameters
    cleaned_text = clean(
        text,
        fix_unicode=True,  # fix various unicode errors
        to_ascii=True,  # transliterate to closest ASCII representation
        lower=True,  # lowercase text
        no_line_breaks=False,  # fully strip line breaks as opposed to only normalizing them
        no_urls=True,  # replace all URLs with a special token
        no_emails=True,  # replace all email addresses with a special token
        no_phone_numbers=True,  # replace all phone numbers with a special token
        no_numbers=True,  # replace all numbers with a special token
        no_digits=True,  # replace all digits with a special token
        no_currency_symbols=True,  # replace all currency symbols with a special token
        no_punct=False,  # remove punctuations
        lang="en",  # set to 'de' for German special handling
    )

    # Further clean the text by removing any remaining special characters except word characters, whitespace, and periods/commas
    cleaned_text = re.sub(r"[^\w\s.,]", "", cleaned_text)
    # Replace multiple whitespace characters with a single space and strip leading/trailing spaces
    cleaned_text = re.sub(r"\s+", " ", cleaned_text).strip()

    return cleaned_text

PDF-Textextraktion

def extract_text_from_pdf(pdf_path):
    with open(pdf_path, "rb") as f:
        pdf = pdftotext.PDF(f)
    all_text = "\n\n".join(pdf)
    return normalize_text(all_text)

Satz-Tokenisierung

def split_into_sentences(text):
    return sent_tokenize(text)

Mehrere Dateien verarbeiten

def process_files(file_paths):
    authors, titles, all_sentences = [], [], []
    for file_path in file_paths:
        file_name = os.path.basename(file_path)
        parts = file_name.split(" - ", 2)
        if len(parts) != 3 or not file_name.endswith(".pdf"):
            print(f"Skipping file with incorrect format: {file_name}")
            continue

        year, author, title = parts
        author, title = author.strip(), title.replace(".pdf", "").strip()

        try:
            text = extract_text_from_pdf(file_path)
        except Exception as e:
            print(f"Error extracting text from {file_name}: {e}")
            continue

        sentences = split_into_sentences(text)
        authors.append(author)
        titles.append(title)
        all_sentences.extend(sentences)
        print(f"Number of sentences for {file_name}: {len(sentences)}")

    return authors, titles, all_sentences

Daten im CSV-Format speichern

def save_data_to_csv(authors, titles, file_paths, output_file):
    texts = []
    for fp in file_paths:
        try:
            text = extract_text_from_pdf(fp)
            sentences = split_into_sentences(text)
            texts.append(" ".join(sentences))
        except Exception as e:
            print(f"Error processing file {fp}: {e}")
            texts.append("")

    data = pd.DataFrame({
        "Author": authors,
        "Title": titles,
        "Text": texts
    })
    data.to_csv(output_file, index=False, quoting=1, encoding='utf-8')
    print(f"Data has been written to {output_file}")

Stoppwörter werden geladen

def load_stopwords(filepath):
    with open(filepath, "r") as f:
        stopwords = f.read().splitlines()
    additional_stopwords = ["able", "according", "act", "actually", "after", "again", "age", "agree", "al", "all", "already", "also", "am", "among", "an", "and", "another", "any", "appropriate", "are", "argue", "as", "at", "avoid", "based", "basic", "basis", "be", "been", "begin", "best", "book", "both", "build", "but", "by", "call", "can", "cant", "case", "cases", "claim", "claims", "class", "clear", "clearly", "cope", "could", "course", "data", "de", "deal", "dec", "did", "do", "doesnt", "done", "dont", "each", "early", "ed", "either", "end", "etc", "even", "ever", "every", "far", "feel", "few", "field", "find", "first", "follow", "follows", "for", "found", "free", "fri", "fully", "get", "had", "hand", "has", "have", "he", "help", "her", "here", "him", "his", "how", "however", "httpsabout", "ibid", "if", "im", "in", "is", "it", "its", "jstor", "june", "large", "lead", "least", "less", "like", "long", "look", "man", "many", "may", "me", "money", "more", "most", "move", "moves", "my", "neither", "net", "never", "new", "no", "nor", "not", "notes", "notion", "now", "of", "on", "once", "one", "ones", "only", "open", "or", "order", "orgterms", "other", "our", "out", "own", "paper", "past", "place", "plan", "play", "point", "pp", "precisely", "press", "put", "rather", "real", "require", "right", "risk", "role", "said", "same", "says", "search", "second", "see", "seem", "seems", "seen", "sees", "set", "shall", "she", "should", "show", "shows", "since", "so", "step", "strange", "style", "such", "suggests", "talk", "tell", "tells", "term", "terms", "than", "that", "the", "their", "them", "then", "there", "therefore", "these", "they", "this", "those", "three", "thus", "to", "todes", "together", "too", "tradition", "trans", "true", "try", "trying", "turn", "turns", "two", "up", "us", "use", "used", "uses", "using", "very", "view", "vol", "was", "way", "ways", "we", "web", "well", "were", "what", "when", "whether", "which", "who", "why", "with", "within", "works", "would", "years", "york", "you", "your", "suggests", "without"]
    stopwords.extend(additional_stopwords)
    return set(stopwords)

Filtern von Stoppwörtern aus Themen

def filter_stopwords_from_topics(topic_words, stopwords):
    filtered_topics = []
    for words in topic_words:
        filtered_topics.append([word for word in words if word.lower() not in stopwords])
    return filtered_topics

Wortwolkengenerierung

def generate_wordcloud(topic_words, topic_num, palette='inferno'):
    colors = sns.color_palette(palette, n_colors=256).as_hex()
    def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
        return colors[random_state.randint(0, len(colors) - 1)]

    wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate(' '.join(topic_words))
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.title(f'Topic {topic_num} Word Cloud')
    plt.show()

Hauptausführung

file_paths = [f"/home/roomal/Desktop/Dreyfus-Project/Dreyfus/{fname}" for fname in os.listdir("/home/roomal/Desktop/Dreyfus-Project/Dreyfus/") if fname.endswith(".pdf")]

authors, titles, all_sentences = process_files(file_paths)

output_file = "/home/roomal/Desktop/Dreyfus-Project/Dreyfus_Papers.csv"
save_data_to_csv(authors, titles, file_paths, output_file)

stopwords_filepath = "/home/roomal/Documents/Lists/stopwords.txt"
stopwords = load_stopwords(stopwords_filepath)

try:
    topic_model = Top2Vec(
        all_sentences,
        embedding_model="distiluse-base-multilingual-cased",
        speed="deep-learn",
        workers=6
    )
    print("Top2Vec model created successfully.")
except ValueError as e:
    print(f"Error initializing Top2Vec: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")

num_topics = topic_model.get_num_topics()
topic_words, word_scores, topic_nums = topic_model.get_topics(num_topics)
filtered_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_topic_words):
    print(f"Topic {i}: {', '.join(words)}")

keywords = ["heidegger"]
topic_words, word_scores, topic_scores, topic_nums = topic_model.search_topics(keywords=keywords, num_topics=num_topics)
filtered

_search_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_search_topic_words):
    generate_wordcloud(words, topic_nums[i])

for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)

Topic Wordcloud

Reduzieren Sie die Anzahl der Themen

reduced_num_topics = 5
topic_mapping = topic_model.hierarchical_topic_reduction(num_topics=reduced_num_topics)

# Print reduced topics and generate word clouds
for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)

Hierarchical Topic Reduction Wordcloud

Das obige ist der detaillierte Inhalt vonThemenmodellierung mit Topc: Dreyfus, AI und Wordclouds. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:Python: print()-MethodenNächster Artikel:Python: print()-Methoden