Heim >Backend-Entwicklung >C++ >Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?
Stream-Verarbeitungstechnologie wird für die Verarbeitung großer Datenmengen verwendet. Stream-Verarbeitung ist eine Technologie, die Datenströme in Echtzeit verarbeitet. In C++ kann Apache Kafka für die Stream-Verarbeitung verwendet werden. Die Stream-Verarbeitung bietet Echtzeit-Datenverarbeitung, Skalierbarkeit und Fehlertoleranz. In diesem Beispiel wird Apache Kafka verwendet, um Daten aus einem Kafka-Thema zu lesen und den Durchschnitt zu berechnen.
Big-Data-Verarbeitung in C++-Technologie: Verwendung der Stream-Verarbeitungstechnologie zur Verarbeitung von Big-Data-Streams
Stream-Verarbeitung ist eine Technologie, die unbegrenzte Datenströme verarbeitet und es Entwicklern ermöglicht, Daten sofort bei ihrer Generierung zu verarbeiten und zu analysieren. In C++ können wir Stream-Processing-Frameworks wie Apache Kafka verwenden, um diese Funktionalität zu erreichen.
Vorteile des Stream Processing Framework
Praktischer Fall: Stream-Verarbeitung mit Apache Kafka
Lassen Sie uns Apache Kafka verwenden, um eine C++-Stream-Verarbeitungsanwendung zu erstellen, die Daten aus einem Kafka-Thema liest und den Durchschnittswert im Datenstrom berechnet.
// 头文件 #include <kafka/apache_kafka.h> #include <thread> #include <atomic> // 定义原子平均值计数器 std::atomic<double> avg_count(0.0); // 流处理消费者线程 void consume_thread(const std::string& topic, rd_kafka_t* rk) { // 创建消费者组 rd_kafka_consumer_group_t* consumer_group = rd_kafka_consumer_group_join(rk, topic.c_str(), rd_kafka_topic_partition_list_new(1), NULL); while (true) { // 订阅主题 rd_kafka_message_t* message; rd_kafka_resp_err_t consumer_err = rd_kafka_consumer_group_poll(consumer_group, 10000, &message); if (consumer_err == RD_KAFKA_RESP_ERR__PARTITION_EOF) { rd_kafka_consumer_group_unjoin(consumer_group); rd_kafka_consumer_group_destroy(consumer_group); return; } else if (consumer_err != RD_KAFKA_RESP_ERR_NO_ERROR) { std::cerr << "Consumer error: " << rd_kafka_err2str(consumer_err) << "\n"; continue; } // 提取并处理数据 if (message) { // 提取值 const char* message_str = static_cast<const char*>(message->payload); int value = std::atoi(message_str); // 更新原子平均值计数器 avg_count += (static_cast<double>(value) - avg_count) / (avg_count.fetch_add(1) + 1); if (avg_count >= 1e6) { std::cout << "Average: " << avg_count << "\n"; } } // 提交偏移量 rd_kafka_message_destroy(message); } } int main() { // 初始化 Kafka 实例 rd_kafka_t* rk = rd_kafka_new(RD_KAFKA_CONSUMER, NULL, NULL, NULL); if (!rk) { std::cerr << "Failed to initialize Kafka instance\n"; return 1; } // 配置 Kafka 实例 char error_str[512]; if (rd_kafka_conf_set(rk, "bootstrap.servers", "localhost:9092", error_str, sizeof(error_str)) != RD_KAFKA_CONF_OK) { std::cerr << "Failed to set Kafka configuration: " << error_str << "\n"; rd_kafka_destroy(rk); return 1; } // 创建流处理消费者线程 std::thread consumer_thr(consume_thread, "test-topic", rk); // 等待消费者线程 consumer_thr.join(); // 销毁 Kafka 实例 rd_kafka_destroy(rk); return 0; }
Durch das Ausführen dieses Codes wird eine Stream-Verarbeitungsanwendung erstellt, die Daten aus dem Kafka-Thema „test-topic“ liest und einen Durchschnitt pro Sekunde berechnet.
Das obige ist der detaillierte Inhalt vonBig-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!