先来回顾一下Python中遍历字典的一些基本方法:
脚本:
#!/usr/bin/python dict={"a":"apple","b":"banana","o":"orange"} print "##########dict######################" for i in dict: print "dict[%s]=" % i,dict[i] print "###########items#####################" for (k,v) in dict.items(): print "dict[%s]=" % k,v print "###########iteritems#################" for k,v in dict.iteritems(): print "dict[%s]=" % k,v print "###########iterkeys,itervalues#######" for k,v in zip(dict.iterkeys(),dict.itervalues()): print "dict[%s]=" % k,v
执行结果:
##########dict###################### dict[a]= apple dict[b]= banana dict[o]= orange ###########items##################### dict[a]= apple dict[b]= banana dict[o]= orange ###########iteritems################# dict[a]= apple dict[b]= banana dict[o]= orange ###########iterkeys,itervalues####### dict[a]= apple dict[b]= banana dict[o]= orange
嗯,然后我们进入“正题”--
一段关于Python字典遍历的“争论”....
先摘抄下:
#这里初始化一个dict >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #本意是遍历dict,发现元素的值是0的话,就删掉 >>> for k in d: ... if d[k] == 0: ... del(d[k]) ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration #结果抛出异常了,两个0的元素,也只删掉一个。 >>> d {'a': 1, 'c': 1, 'd': 0} >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #d.keys() 是一个下标的数组 >>> d.keys() ['a', 'c', 'b', 'd'] #这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。 >>> for k in d.keys(): ... if d[k] == 0: ... del(d[k]) ... >>> d {'a': 1, 'c': 1} #结果也是对的 >>> #这里初始化一个dict >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #本意是遍历dict,发现元素的值是0的话,就删掉 >>> for k in d: ... if d[k] == 0: ... del(d[k]) ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration #结果抛出异常了,两个0的元素,也只删掉一个。 >>> d {'a': 1, 'c': 1, 'd': 0} >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #d.keys() 是一个下标的数组 >>> d.keys() ['a', 'c', 'b', 'd'] #这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。 >>> for k in d.keys(): ... if d[k] == 0: ... del(d[k]) ... >>> d {'a': 1, 'c': 1} #结果也是对的 >>>
其实这个问题本来很简单,就是说如果遍历一个字典,但是在遍历中改变了他,比如增删某个元素,就会导致遍历退出,并且抛出一个dictionary changed size during iteration的异常.
解决方法是遍历字典键值,以字典键值为依据遍历,这样改变了value以后不会影响遍历继续。
但是下面又有一位大神抛出高论:
首先,python 是推荐使用迭代器的,也就是 for k in adict 形式。其次,在遍历中删除容器中的元素,在 C++ STL 和 Python 等库中,都是不推荐的,因为这种情况往往说明了你的设计方案有问题,所有都有特殊要求,对应到 python 中,就是要使用 adict.key() 做一个拷贝。最后,所有的 Python 容器都不承诺线程安全,你要多线程做这件事,本身就必须得加锁,这也说明了业务代码设计有问题的.
但由“遍历中删除特定元素”这种特例,得出“遍历dict的时候,养成使用 for k in d.keys() 的习惯”,我觉得有必要纠正一下。在普通的遍历中,应该使用 for k in adict。
另外,对于“遍历中删除元素”这种需求,pythonic 的做法是 adict = {k, v for adict.iteritems() if v != 0} 或 alist = [i for i in alist if i != 0]
这个写法让我眼前一亮:怎么还有这个语法?
再仔细一看,他可能是这个意思:
#!/usr/bin/env python # -*- coding=utf-8 -*- a = {'a':1, 'b':0, 'c':1, 'd':0} b={} for k,v in a.items(): if v != 0: b.update({k:v}) adict = b del b print a #!/usr/bin/env python # -*- coding=utf-8 -*- a = {'a':1, 'b':0, 'c':1, 'd':0} b={} for k,v in a.items(): if v != 0: b.update({k:v}) adict = b del b print a
不知道对不对。
因为这个写法一开始让我猛然想到三元操作符,仔细一看才发现不是,以前Goolge到有个解决方案
val = float(raw_input("Age: ")) status = ("working","retired")[val>65] print "You should be",status val = float(raw_input("Age: ")) status = ("working","retired")[val>65] print "You should be",status
val>65是个逻辑表达式,返回0或者1,刚好作为前面那个元组的ID来取值,实在是太妙了。。。
不过在Google的资料里面还有一个版本
#V1 if X else V2 s = None a = "not null" if s == None else s print a #'not null'
后来发帖在华蟒用户组(中文Python技术邮件列表)中提到后众多大神解答如下:
>>> alist = [1,2,0,3,0,4,5] >>> alist = [i for i in alist if i != 0] >>> alist [1, 2, 3, 4, 5] >>> d = {'a':1, 'b':0, 'c':1, 'd':0} >>> d = dict([(k,v) for k,v in d.iteritems() if v!=0]) >>> d {'a':1,'c':1'}
如果大于Python>=2.7
还可以用这个写法:
>>> d = {k:v for k,v in d.iteritems() if v !=0 }

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.