Heim  >  Artikel  >  Datenbank  >  数据库:mongodb与关系型数据库相比的优缺点zz (转)

数据库:mongodb与关系型数据库相比的优缺点zz (转)

WBOY
WBOYOriginal
2016-06-07 17:38:14923Durchsuche

数据库:mongodb与关系型数据库相比的优缺点zz (转) 与关系型数据库相比,MongoDB的优点: ①弱一致性(最终一致),更能保证用户的访问速度: 举例来说,在传统的关系型数据库中,一个COUNT类型的操作会锁定数据集,这样可以保证得到当前情况下的精确值。这

数据库:mongodb与关系型数据库相比的优缺点zz (转)

与关系型数据库相比,MongoDB的优点:
①弱一致性(最终一致),更能保证用户的访问速度:
举例来说,在传统的关系型数据库中,一个COUNT类型的操作会锁定数据集,这样可以保证得到“当前”情况下的精确值。这在某些情况下,例 如通过ATM查看账户信息的时候很重要,但对于Wordnik来说,数据是不断更新和增长的,这种“精确”的保证几乎没有任何意义,反而会产生很大的延 迟。他们需要的是一个“大约”的数字以及更快的处理速度。

但某些情况下MongoDB会锁住数据库。如果此时正有数百个请求,则它们会堆积起来,造成许多问题。我们使用了下面的优化方式来避免锁定:
每次更新前,我们会先查询记录。查询操作会将对象放入内存,于是更新则会尽可能的迅速。在主/从部署方案中,从节点可以使用“-pretouch”参数运行,这也可以得到相同的效果。 
使用多个mongod进程。我们根据访问模式将数据库拆分成多个进程。 
②文档结构的存储方式,,能够更便捷的获取数据。
对于一个层级式的数据结构来说,如果要将这样的数据使用扁平式的,表状的结构来保存数据,这无论是在查询还是获取数据时都十分困难。
举例1:
就拿一个“字典项”来说,虽然并不十分复杂,但还是会关系到“定义”、“词性”、“发音”或是“引用”等内容。大部分工程师会将这种模型使用关系型数据库 中的主键和外键表现出来,但把它看作一个“文档”而不是“一系列有关系的表”岂不更好?使用 “dictionary.definition.partOfSpeech='noun'”来查询也比表之间一系列复杂(往往代价也很高)的连接查询方便 且快速。

举例2:在一个关系型数据库中,一篇博客(包含文章内容、评论、评论的投票)会被打散在多张数据表中。在MongoDB中,能用一个文档来表示一篇博客, 评论与投票作为文档数组,放在正文主文档中。这样数据更易于管理,消除了传统关系型数据库中影响性能和水平扩展性的“JOIN”操作。

CODE↓
> db.blogposts.save({ title : "My First Post", author: {name : "Jane", id :1},
  comments : [{ by: "Abe", text: "First" },
              { by : "Ada", text : "Good post" }]
})

> db.blogposts.find( { "author.name" : "Jane" } )

> db.blogposts.findOne({ title : "My First Post", "author.name": "Jane",
  comments : [{ by: "Abe", text: "First" },
              { by : "Ada", text : "Good post" } ]
})
> db.blogposts.find( { "comments.by" : "Ada" } )

> db.blogposts.ensureIndex( { "comments.by" : 1 } );
举例③:
MongoDB是一个面向文档的数据库,目前由10gen开发并维护,它的功能丰富,齐全,完全可以替代MySQL。在使用MongoDB做产品原型的过程中,我们总结了MonogDB的一些亮点:
使用JSON风格语法,易于掌握和理解:MongoDB使用JSON的变种BSON作为内部存储的格式和语法。针对MongoDB的操作都使用JSON风格语法,客户端提交或接收的数据都使用JSON形式来展现。相对于SQL来说,更加直观,容易理解和掌握。
Schema-less,支持嵌入子文档:MongoDB是一个Schema-free的文档数据库。一个数据库可以有多个Collection,每 个Collection是Documents的集合。Collection和Document和传统数据库的Table和Row并不对等。无需事先定义 Collection,随时可以创建。
Collection中可以包含具有不同schema的文档记录。 这意味着,你上一条记录中的文档有3个属性,而下一条记录的文档可以有10个属 性,属性的类型既可以是基本的数据类型(如数字、字符串、日期等),也可以是数组或者散列,甚至还可以是一个子文档(embed document)。这 样,可以实现逆规范化(denormalizing)的数据模型,提高查询的速度。

 

图1 MongoDB是一个Schema-free的文档数据库

图1 MongoDB是一个Schema-free的文档数据库

 


图2是一个例子,作品和评论可以设计为一个collection,评论作为子文档内嵌在art的comments属性中,评论的回复则作为 comment子文档的子文档内嵌于replies属性。按照这种设计模式,只需要按照作品id检索一次,即可获得所有相关的信息了。在MongoDB 中,不强调一定对数据进行Normalize ,很多场合都建议De-normalize,开发人员可以扔掉传统关系数据库各种范式的限制,不需要把所有 的实体都映射为一个Collection,只需定义最顶级的class。MongoDB的文档模型可以让我们很轻松就能将自己的Object映射到 collection中实现存储。

图2 MongoDB支持嵌入子文档

图2 MongoDB支持嵌入子文档

 

 

③内置GridFS,支持大容量的存储。
  GridFS是一个出色的分布式文件系统,可以支持海量的数据存储。
  内置了GridFS了MongoDB,能够满足对大数据集的快速范围查询。
④内置Sharding。
提供基于Range的Auto Sharding机制:一个collection可按照记录的范围,分成若干个段,切分到不同的Shard上。
Shards可以和复制结合,配合Replica sets能够实现Sharding+fail-over,不同的Shard之间可以负载均衡。查询是对 客户端是透明的。客户端执行查询,统计,MapReduce等操作,这些会被MongoDB自动路由到后端的数据节点。这让我们关注于自己的业务,适当的 时候可以无痛的升级。MongoDB的Sharding设计能力最大可支持约20 petabytes,足以支撑一般应用。
这可以保证MongoDB运行在便宜的PC服务器集群上。PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn