Heim >Datenbank >MySQL-Tutorial >基于Redis的BloomFilter实战

基于Redis的BloomFilter实战

WBOY
WBOYOriginal
2016-06-07 16:34:341551Durchsuche

离线数据处理与实时数据处理有很大的不同,其中一个例子就是去重。在聚数据中,访问UV和购买UV都需要实时的去重。离线处理的时候,我们可以通过count(groupby)或者count(distinct)等方式比较容易的计算出UV,而且不用太担心性能,大不了就是多一点map或者执

离线数据处理与实时数据处理有很大的不同,其中一个例子就是去重。在聚数据中,访问UV和购买UV都需要实时的去重。离线处理的时候,我们可以通过count(groupby)或者count(distinct)等方式比较容易的计算出UV,而且不用太担心性能,大不了就是多一点map或者执行时间久一点。那么在实时计算的时候,我们有什么好的办法来做这个事情呢?

在聚数据中有两种场景:
1,数据的准确性要求高,最好就是完全准确的,例如购买UV。同时交易数据量比较小,聚划算每天的交易笔数仅在百万级别。对于这样的情况,我们采用了基于HBase的过滤。具体做法如下:
建立HBase去重表,对ColumnFamily设置过期时间,如:HColumnDescriptor.setTimeToLive(3*24*60*60);这样3天后的数据将自动删除,以免表过大。然后利用hbase的increment计数,判断计数值是否等于1即可。非常简单粗暴。
2,数据的准确性要求不是很严格,允许有少许的误差,例如访问UV。往往数据量也比较大,聚划算每天的访问UV在千万级别。这种情况我们想到了BloomFilter,也就是本文的重点。

BloomFilter原理:
简单的说就是:通过将一个key的hash值分布到一个大的bit数组上面,判断一个key是否存在时只需判断该的hash对应的bit位是否都是1,如果全是1则表示存在,否则不存在。
优点:性能很高主要在hash算法上面,空间占用小,能够极大的缩小存储空间。
缺点:存在误判。既对应的bit位刚好被其他的key置为1了。

好在误判率是可控的,我们假设kn (1 – e^(-k * n / m)) ^ k ?对应的java代码:Math.pow((1 – Math.exp(-k * numberOfElements?/ (double) bitSetSize)), k);

对于公式对应的具体原理,个人觉得不必去深究,只需要记住下面两句话,即可将BloomFilter应用自如:
1,如果他告诉你不存在,则一定不存在;
2,如果他告诉你存在,则可能不存在。

因此BloomFilter最理想的应用场景是在一些复杂的查询时,在DB上做一层BloomFilter判断,如果BloomFilter判断不存在,则没必要到DB去查了。顶多就是出现误判时,多到DB查询一下,而这个概率是很低的。

上面说到的BloomFilter还紧紧是单机内存的,在淘宝这个环境下,显然是不适用的。那么我们如何把他变成分布式的呢?看了标题我想你已经知道了,对了,那就是redis。
BloomFilter需要的bit数组与redis的bit操作真是完美契合啊。利用redis的高性能以及通过pipeline将多条bit操作命令批量提交,实现了多机BloomFilter的bit数据共享。唯一需要注意的是redis的bitmap只支持2^32大小,对应到内存也就是512MB,数组的下标最大只能是2^32-1。不过这个限制我们可以通过构建多个redis的bitmap通过hash取模的方式分散一下即可。同时利用上面的公式计算一下:万分之一的误判率,512MB可以放下2亿左右的数据,而目前全网的uv也就8千万,所以,你懂的。

原文出处:http://www.imsiren.com/archives/988
Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:Mongodb使用小结Nächster Artikel:MySQL 5.1分区技术初探(五)