Heim >Datenbank >MySQL-Tutorial >Hadoop HelloWord Examples- 求平均数

Hadoop HelloWord Examples- 求平均数

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-07 16:32:191001Durchsuche

? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如: //? subject1.txt ? a 90 ? b 80 ? c 70 ?// subject2.txt ? a 100 ? b 90 ? c 80 ? 求a,b,c这三个人的平均

? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如:

//? subject1.txt

? a 90
? b 80
? c 70


?// subject2.txt

? a 100
? b 90
? c 80


? 求a,b,c这三个人的平均分。解决思路很简单,在map阶段key是名字,value是成绩,直接output。reduce阶段得到了map输出的key名字,values是该名字对应的一系列的成绩,那么对其求平均数即可。

? 这里我们实现了两个版本的代码,分别用TextInputFormat和 KeyValueTextInputFormat来作为输入格式。

? TextInputFormat版本:

?

import java.util.*;
import java.io.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class AveScore {
	public static class AveMapper extends Mapper
	{
		@Override
		public void map(Object key, Text value, Context context) throws IOException, InterruptedException
		{
			String line = value.toString();
			String[] strs = line.split(" ");
			String name = strs[0];
			int score = Integer.parseInt(strs[1]);
			context.write(new Text(name), new IntWritable(score));
		}
	}
	public static class AveReducer extends Reducer
	{
		@Override
		public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException
		{
			int sum = 0;
			int count = 0;
			for(IntWritable val : values)
			{
				sum += val.get();
				count++;
			}
			int aveScore = sum / count;
			context.write(key, new IntWritable(aveScore));
		}
	}
	public static void main(String[] args) throws Exception
	{
		Configuration conf = new Configuration();
		Job job = new Job(conf,"AverageScore");
		job.setJarByClass(AveScore.class);
		job.setMapperClass(AveMapper.class);
		job.setReducerClass(AveReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		System.exit( job.waitForCompletion(true) ? 0 : 1);
	}
}

KeyValueTextInputFormat版本;

import java.util.*;
import java.io.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class AveScore_KeyValue {
	public static class AveMapper extends Mapper
	{
		@Override
		public void map(Text key, Text value, Context context) throws IOException, InterruptedException
		{
		    int score = Integer.parseInt(value.toString());
			context.write(key, new IntWritable(score) );
		}
	}
	public static class AveReducer extends Reducer
	{
		@Override
		public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException
		{
			int sum = 0;
			int count = 0;
			for(IntWritable val : values)
			{
				sum += val.get();
				count++;
			}
			int aveScore = sum / count;
			context.write(key, new IntWritable(aveScore));
		}
	}
	public static void main(String[] args) throws Exception
	{
		Configuration conf = new Configuration();
		conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");
		Job job = new Job(conf,"AverageScore");
		job.setJarByClass(AveScore_KeyValue.class);
		job.setMapperClass(AveMapper.class);
		job.setReducerClass(AveReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
  		job.setInputFormatClass(KeyValueTextInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class)  ; 
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		System.exit( job.waitForCompletion(true) ? 0 : 1);
	}
}


输出结果为:

? a 95
? b 85
? c 75

?

作者:qiul12345 发表于2013-8-23 21:51:03 原文链接

阅读:113 评论:0 查看评论

Hadoop HelloWord Examples- 求平均数

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn