Heim >Datenbank >MySQL-Tutorial >Hadoop序列化与Writable接口(一)

Hadoop序列化与Writable接口(一)

WBOY
WBOYOriginal
2016-06-07 16:30:261025Durchsuche

序列化 序列化 (serialization)是指将结构化的对象转化为字节流,以便在网络上传输或者写入到硬盘进行永久存储;相对的 反序列化 (deserialization)是指将字节流转回到结构化对象的过程。 在分布式系统中进程将对象序列化为字节流,通过网络传输到另一进

序列化

序列化(serialization)是指将结构化的对象转化为字节流,以便在网络上传输或者写入到硬盘进行永久存储;相对的反序列化(deserialization)是指将字节流转回到结构化对象的过程。

在分布式系统中进程将对象序列化为字节流,通过网络传输到另一进程,另一进程接收到字节流,通过反序列化转回到结构化对象,以达到进程间通信。在Hadoop中,Mapper,Combiner,Reducer等阶段之间的通信都需要使用序列化与反序列化技术。举例来说,Mapper产生的中间结果(<key: value1 value2...></key:>)需要写入到本地硬盘,这是序列化过程(将结构化对象转化为字节流,并写入硬盘),而Reducer阶段读取Mapper的中间结果的过程则是一个反序列化过程(读取硬盘上存储的字节流文件,并转回为结构化对象),需要注意的是,能够在网络上传输的只能是字节流,Mapper的中间结果在不同主机间洗牌时,对象将经历序列化和反序列化两个过程。

序列化是Hadoop核心的一部分,在Hadoop中,位于org.apache.hadoop.io包中的Writable接口是Hadoop序列化格式的实现。

Writable接口

Hadoop Writable接口是基于DataInput和DataOutput实现的序列化协议,紧凑(高效使用存储空间),快速(读写数据、序列化与反序列化的开销小)。Hadoop中的键(key)和值(value)必须是实现了Writable接口的对象(键还必须实现WritableComparable,以便进行排序)。

以下是Hadoop(使用的是Hadoop 1.1.2)中Writable接口的声明:

package org.apache.hadoop.io;

import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;

public interface Writable {
  /** 
   * Serialize the fields of this object to <code>out</code>.
   * 
   * @param out <code>DataOuput</code> to serialize this object into.
   * @throws IOException
   */
  void write(DataOutput out) throws IOException;

  /** 
   * Deserialize the fields of this object from <code>in</code>.  
   * 
   * <p>For efficiency, implementations should attempt to re-use storage in the 
   * existing object where possible.</p>
   * 
   * @param in <code>DataInput</code> to deseriablize this object from.
   * @throws IOException
   */
  void readFields(DataInput in) throws IOException;
}

Writable类

Hadoop自身提供了多种具体的Writable类,包含了常见的Java基本类型(boolean、byte、short、int、float、long和double等)和集合类型(BytesWritable、ArrayWritable和MapWritable等)。这些类型都位于org.apache.hadoop.io包中。

writable-classes

(图片来源:safaribooksonline.com)

定制Writable类

虽然Hadoop内建了多种Writable类提供用户选择,Hadoop对Java基本类型的包装Writable类实现的RawComparable接口,使得这些对象不需要反序列化过程,便可以在字节流层面进行排序,从而大大缩短了比较的时间开销,但是当我们需要更加复杂的对象时,Hadoop的内建Writable类就不能满足我们的需求了(需要注意的是Hadoop提供的Writable集合类型并没有实现RawComparable接口,因此也不满足我们的需要),这时我们就需要定制自己的Writable类,特别将其作为键(key)的时候更应该如此,以求达到更高效的存储和快速的比较。

下面的实例展示了如何定制一个Writable类,一个定制的Writable类首先必须实现Writable或者WritableComparable接口,然后为定制的Writable类编写write(DataOutput out)和readFields(DataInput in)方法,来控制定制的Writable类如何转化为字节流(write方法)和如何从字节流转回为Writable对象。

package com.yoyzhou.weibo;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.io.Writable;

/**
 *This MyWritable class demonstrates how to write a custom Writable class 
 *
 **/
public class MyWritable implements Writable{
		
		
	private VLongWritable field1;
	private VLongWritable field2;
		
	public MyWritable(){
		this.set(new VLongWritable(), new VLongWritable());
	}
		
		
	public MyWritable(VLongWritable fld1, VLongWritable fld2){
			
		this.set(fld1, fld2);
			
	}
		
	public void set(VLongWritable fld1, VLongWritable fld2){
		//make sure the smaller field is always put as field1
		if(fld1.get() o is a MyWritable with the same values. */
	@Override
	public boolean equals(Object o) {
		 if (!(o instanceof MyWritable))
		    return false;
		
		    MyWritable other = (MyWritable)o;
		    return field1.equals(other.field1) && field2.equals(other.field2);
		
	}
		
	@Override
	public int hashCode(){
			
		return field1.hashCode() * 163 + field2.hashCode();
	}
		
	@Override
	public String toString() {
		return field1.toString() + "\t" + field2.toString();
	}
		
}

未完待续,下一篇中将介绍Writable对象序列化为字节流时占用的字节长度以及其字节序列的构成。

参考资料

Tom White, Hadoop: The Definitive Guide, 3rd Edition

---To Be Continued---

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn