RowFilter用于过滤row key Operator Description LESS 小于 LESS_OR_EQUAL 小于等于 EQUAL 等于 NOT_EQUAL 不等于 GREATER_OR_EQUAL 大于等于 GREATER 大于 NO_OP 排除所有 Comparator Description BinaryComparator 使用Bytes.compareTo()比较 BinaryPrefix
RowFilter用于过滤row key
Operator | Description |
---|---|
LESS |
小于 |
LESS_OR_EQUAL |
小于等于 |
EQUAL |
等于 |
NOT_EQUAL |
不等于 |
GREATER_OR_EQUAL |
大于等于 |
GREATER |
大于 |
NO_OP |
排除所有 |
Comparator | Description |
---|---|
BinaryComparator |
使用Bytes.compareTo()比较 |
BinaryPrefixComparator |
和BinaryComparator差不多,从前面开始比较 |
NullComparator |
Does?not compare against an actual value but whether a given one is?null , or not?null . |
BitComparator |
Performs?a bitwise comparison, providing a?BitwiseOp ?class with?AND ,?OR , and?XOR ?operators. |
RegexStringComparator |
正则表达式 |
SubstringComparator |
把数据当成字符串,用contains()来判断 |
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.BinaryComparator; import org.apache.hadoop.hbase.filter.BinaryPrefixComparator; import org.apache.hadoop.hbase.filter.CompareFilter; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.filter.RegexStringComparator; import org.apache.hadoop.hbase.filter.RowFilter; import org.apache.hadoop.hbase.filter.SubstringComparator; public class TestHbaseRowFilter { String tableName = "test_row_filter"; Configuration config = HBaseConfiguration.create(); /** * 部分代码来自hbase权威指南 * @throws IOException */ public void testRowFilter() throws IOException { HTable table = new HTable(config, tableName); Scan scan = new Scan(); System.out.println("小于等于row010的行"); Filter filter1 = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator("row010".getBytes())); scan.setFilter(filter1); ResultScanner scanner1 = table.getScanner(scan); for (Result res : scanner1) { System.out.println(res); } scanner1.close(); System.out.println("正则获取结尾为5的行"); Filter filter2 = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator(".*5$")); scan.setFilter(filter2); ResultScanner scanner2 = table.getScanner(scan); for (Result res : scanner2) { System.out.println(res); } scanner2.close(); System.out.println("包行有5的行"); Filter filter3 = new RowFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("5")); scan.setFilter(filter3); ResultScanner scanner3 = table.getScanner(scan); for (Result res : scanner3) { System.out.println(res); } scanner3.close(); System.out.println("开头是row01的"); Filter filter4 = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator("row01".getBytes())); scan.setFilter(filter4); ResultScanner scanner4 = table.getScanner(scan); for (Result res : scanner4) { System.out.println(res); } scanner3.close(); } /** * 初始化数据 */ public void init() { // 创建表和初始化数据 try { HBaseAdmin admin = new HBaseAdmin(config); if (!admin.tableExists(tableName)) { HTableDescriptor htd = new HTableDescriptor(tableName); HColumnDescriptor hcd1 = new HColumnDescriptor("data"); htd.addFamily(hcd1); HColumnDescriptor hcd2 = new HColumnDescriptor("url"); htd.addFamily(hcd2); admin.createTable(htd); } HTable table = new HTable(config, tableName); table.setAutoFlush(false); int count = 50; for (int i = 1; i <h2 id="输出结果">输出结果</h2> <pre class="brush:php;toolbar:false">小于等于row010的行 keyvalues={row001/data:col1/1364133382268/Put/vlen=7, row001/url:col1/1364133382268/Put/vlen=6} keyvalues={row002/data:col2/1364133382268/Put/vlen=7, row002/url:col2/1364133382268/Put/vlen=6} keyvalues={row003/data:col3/1364133382268/Put/vlen=7, row003/url:col3/1364133382268/Put/vlen=6} keyvalues={row004/data:col4/1364133382268/Put/vlen=7, row004/url:col4/1364133382268/Put/vlen=6} keyvalues={row005/data:col5/1364133382268/Put/vlen=7, row005/url:col5/1364133382268/Put/vlen=6} keyvalues={row006/data:col6/1364133382268/Put/vlen=7, row006/url:col6/1364133382268/Put/vlen=6} keyvalues={row007/data:col7/1364133382268/Put/vlen=7, row007/url:col7/1364133382268/Put/vlen=6} keyvalues={row008/data:col8/1364133382268/Put/vlen=7, row008/url:col8/1364133382268/Put/vlen=6} keyvalues={row009/data:col9/1364133382268/Put/vlen=7, row009/url:col9/1364133382268/Put/vlen=6} keyvalues={row010/data:col0/1364133382268/Put/vlen=7, row010/url:col0/1364133382268/Put/vlen=6} 正则获取结尾为5的行 keyvalues={row005/data:col5/1364133382268/Put/vlen=7, row005/url:col5/1364133382268/Put/vlen=6} keyvalues={row015/data:col5/1364133382268/Put/vlen=7, row015/url:col5/1364133382268/Put/vlen=6} keyvalues={row025/data:col5/1364133382268/Put/vlen=7, row025/url:col5/1364133382268/Put/vlen=6} keyvalues={row035/data:col5/1364133382268/Put/vlen=7, row035/url:col5/1364133382268/Put/vlen=6} keyvalues={row045/data:col5/1364133382268/Put/vlen=7, row045/url:col5/1364133382268/Put/vlen=6} 包行有5的行 keyvalues={row005/data:col5/1364133382268/Put/vlen=7, row005/url:col5/1364133382268/Put/vlen=6} keyvalues={row015/data:col5/1364133382268/Put/vlen=7, row015/url:col5/1364133382268/Put/vlen=6} keyvalues={row025/data:col5/1364133382268/Put/vlen=7, row025/url:col5/1364133382268/Put/vlen=6} keyvalues={row035/data:col5/1364133382268/Put/vlen=7, row035/url:col5/1364133382268/Put/vlen=6} keyvalues={row045/data:col5/1364133382268/Put/vlen=7, row045/url:col5/1364133382268/Put/vlen=6} keyvalues={row050/data:col0/1364133382268/Put/vlen=7, row050/url:col0/1364133382268/Put/vlen=6} 开头是row01的 keyvalues={row010/data:col0/1364133382268/Put/vlen=7, row010/url:col0/1364133382268/Put/vlen=6} keyvalues={row011/data:col1/1364133382268/Put/vlen=7, row011/url:col1/1364133382268/Put/vlen=6} keyvalues={row012/data:col2/1364133382268/Put/vlen=7, row012/url:col2/1364133382268/Put/vlen=6} keyvalues={row013/data:col3/1364133382268/Put/vlen=7, row013/url:col3/1364133382268/Put/vlen=6} keyvalues={row014/data:col4/1364133382268/Put/vlen=7, row014/url:col4/1364133382268/Put/vlen=6} keyvalues={row015/data:col5/1364133382268/Put/vlen=7, row015/url:col5/1364133382268/Put/vlen=6} keyvalues={row016/data:col6/1364133382268/Put/vlen=7, row016/url:col6/1364133382268/Put/vlen=6} keyvalues={row017/data:col7/1364133382268/Put/vlen=7, row017/url:col7/1364133382268/Put/vlen=6} keyvalues={row018/data:col8/1364133382268/Put/vlen=7, row018/url:col8/1364133382268/Put/vlen=6} keyvalues={row019/data:col9/1364133382268/Put/vlen=7, row019/url:col9/1364133382268/Put/vlen=6}
参考
hbase权威指南
原文地址:hbase RowFilter, 感谢原作者分享。

Speichernde Verfahren sind vorkompilierte SQL -Anweisungen in MySQL zur Verbesserung der Leistung und zur Vereinfachung komplexer Vorgänge. 1. Verbesserung der Leistung: Nach der ersten Zusammenstellung müssen nachfolgende Anrufe nicht neu kompiliert werden. 2. Die Sicherheit verbessern: Beschränken Sie den Zugriff auf die Datenentabelle durch Berechtigungssteuerung. 3. Vereinfachen Sie komplexe Operationen: Kombinieren Sie mehrere SQL -Anweisungen, um die Logik der Anwendungsschicht zu vereinfachen.

Das Arbeitsprinzip des MySQL -Abfrage -Cache besteht darin, die Ergebnisse der ausgewählten Abfrage zu speichern. Wenn dieselbe Abfrage erneut ausgeführt wird, werden die zwischengespeicherten Ergebnisse direkt zurückgegeben. 1) Abfrage -Cache verbessert die Leistung der Datenbank und findet zwischengespeicherte Ergebnisse durch Hash -Werte. 2) Einfache Konfiguration, setzen Sie in MySQL -Konfigurationsdatei query_cache_type und query_cache_size. 3) Verwenden Sie das Schlüsselwort SQL_NO_Cache, um den Cache spezifischer Abfragen zu deaktivieren. 4) In Hochfrequenz-Update-Umgebungen kann Abfrage-Cache Leistungs Engpässe verursachen und muss für die Verwendung durch Überwachung und Anpassung von Parametern optimiert werden.

Die Gründe, warum MySQL in verschiedenen Projekten häufig verwendet wird, umfassen: 1. Hochleistungs und Skalierbarkeit, die mehrere Speichermotoren unterstützen; 2. Einfach zu verwendende und pflegende, einfache Konfiguration und reichhaltige Werkzeuge; 3. Reiches Ökosystem, das eine große Anzahl von Community- und Drittanbietern anzieht; V.

Zu den Schritten für die Aktualisierung der MySQL -Datenbank gehören: 1. Sicherung der Datenbank, 2. Stoppen Sie den aktuellen MySQL -Dienst, 3. Installieren Sie die neue Version von MySQL, 14. Starten Sie die neue Version des MySQL -Dienstes, 5. Wiederherstellen Sie die Datenbank wieder her. Während des Upgrade -Prozesses sind Kompatibilitätsprobleme erforderlich, und erweiterte Tools wie Perconatoolkit können zum Testen und Optimieren verwendet werden.

Zu den MySQL-Backup-Richtlinien gehören logische Sicherungen, physische Sicherungen, inkrementelle Sicherungen, replikationsbasierte Backups und Cloud-Backups. 1. Logical Backup verwendet MySQldump, um die Datenbankstruktur und -daten zu exportieren, die für kleine Datenbanken und Versionsmigrationen geeignet sind. 2. Physische Sicherungen sind durch das Kopieren von Datendateien schnell und umfassend, erfordern jedoch eine Datenbankkonsistenz. 3. Incremental Backup verwendet eine binäre Protokollierung, um Änderungen aufzuzeichnen, was für große Datenbanken geeignet ist. V. 5. Cloud -Backups wie AmazonRDs bieten Automatisierungslösungen, aber Kosten und Kontrolle müssen berücksichtigt werden. Bei der Auswahl einer Richtlinie sollten Datenbankgröße, Ausfallzeittoleranz, Wiederherstellungszeit und Wiederherstellungspunktziele berücksichtigt werden.

MysqlclusteringenhancesDatabaserObustnessandScalabilityBydiTributingDataacrossmultiPlenodes

Das Optimieren von Datenbankschema -Design in MySQL kann die Leistung in den folgenden Schritten verbessern: 1. Indexoptimierung: Erstellen Sie Indizes für gemeinsame Abfragespalten, Ausgleich des Aufwand der Abfragen und Einfügen von Aktualisierungen. 2. Tabellenstrukturoptimierung: Redundieren Sie die Datenreduktion durch Normalisierung oder Anti-Normalisierung und verbessern Sie die Zugangseffizienz. 3. Datentypauswahl: Verwenden Sie geeignete Datentypen, z. B. int anstelle von VARCHAR, um den Speicherplatz zu reduzieren. 4. Partitionierung und Untertisch: Verwenden Sie für große Datenvolumina die Partitionierung und Untertabelle, um Daten zu dispergieren, um die Abfrage- und Wartungseffizienz zu verbessern.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.
