Heim >Datenbank >MySQL-Tutorial >内存数据库FastDB和SQLite性能测评

内存数据库FastDB和SQLite性能测评

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-07 15:42:083216Durchsuche

说是测评,其实过程也很简单,无非是设计测试CASE,编写测试CODE,输出测试RESULT,最后做出结论。通常我们认为带索引的插入耗时相对 于查询和删除来说比较长,因此首先来看插入性能。采用一个简单的表来完成接下来的所有测试,表中仅包含两个字段,INTEGER

说是测评,其实过程也很简单,无非是设计测试CASE,编写测试CODE,输出测试RESULT,最后做出结论。通常我们认为带索引的插入耗时相对 于查询和删除来说比较长,因此首先来看插入性能。采用一个简单的表来完成接下来的所有测试,表中仅包含两个字段,INTEGER intKey,和VARCHAR strKey。测试平台为Window7 32bit系统(Evaluation Copy 7127),编译器VC6 SP6。在DELL INSPIRON 640m上运行,CPU为Intel Core 2 CPU T5500 @ 1.66GHZ,内存2.5G。

对FastDB(采用磁盘模式),表结构的定义如下:

class _TestTable 

public: 
    db_int8 intKey; 
    char const* strKey; 
    TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED))); 
};

REGISTER(_TestTable);

对SQLite,建表SQL如下:

CREATE TABLE [_TestTable] ( [intKey] INTEGER  NOT NULL PRIMARY KEY, [strKey] VARCHAR(50)  NULL)

2.2 不同事务模式下的插入性能比较

2.2.1 FastDB磁盘模式

我们首先按照批量事务处理的模式将intKey从1到nRecords(记录条数),并指定相应的strKey,分别调用相应的接口(均为原始 API)插入到两张表中,这里的批量事务处理模式指的是,比如插入10000条记录,插第一条之前开始事务,最后一条之后结束事务。此时在插入不同数目记 录时的表现分别如下(一万条、十万条、72万条、一百万条):

批量事务提交:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 63 ms 
[SQLITE] Elapsed time for inserting 10000 record: 639 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb (清除测试生成数据,重新测试,下同。)

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 1186 ms 
[SQLITE] Elapsed time for inserting 100000 record: 6318 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 7200000 record: 152460 ms 
[SQLITE] Elapsed time for inserting 7200000 record: 560121 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 15522 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 67423 ms

从上我们可以看出,在批量事务模式下,FastDB比SQLite的插入性能提高了3-10倍。但是在很多情况下,我们可能会需要逐条逐条的事务提交,下面给出了逐条事务模式的测试结果:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 57315 ms(这个太恐怖了,不调整的话没法使用) 
[SQLITE] Elapsed time for inserting 10000 record: 780 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe (SQLITE显式分条事务) 
[FASTDB] Elapsed time for inserting 10000 record: 59967 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1154 ms

从上我们可以看出,FastDB在这种情形下的性能急遽降低,降到一个几乎不能接收的水平。经过对FastDB的源代码分析(开源的好处体现出来 了),发现FastDB在每次事务提交时,都会将变更的数据内容同步到磁盘文件中(这是因为我们采用了磁盘模式),因此造成性能的显著降低。

直观上看,解决FastDB的这个问题有两种办法,一是避免每次事务提交时同步到磁盘,因为在这种应用中,这种同步操作并不需要实时进行,通常每隔 一段时间同步一次就可以了(比如1S、1Min、等根据具体项目的可靠性需要);二是使用前面提到的FastDB无盘(DISKLESS)模式。

我们首先来看第一种方案,通过SEARCH FastDB文档(文档和社区是FastDB的一个软肋),我们发现作者已经考虑到了这个问题,FastDB为数据库提供了precommit的接口,用 于完成除sync到磁盘文件外的所有事物操作,如释放mutex资源等。同时提供了backup接口,用来完成内存数据到磁盘文件的备份,甚至支持打开数 据库时同时指定定时备份到磁盘文件的间隔。这样一来,每次事务提交的效率理论上会得到大大提高,并且通过定时备份机制可以保证数据的可靠性。我们来看使用 precommit进行逐条事务提交时FastDB的表现:

E:\intrest\FastDB\PerfTest\Debug>PerfTest(使用precommit逐条提交事务) 
[FASTDB] Elapsed time for inserting 10000 record: 62 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1170 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 100000 record: 1170 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11747 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 1000000 record: 8081 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 125768 ms

从上可以看出,在逐条事务模式下,通过使用precommit技术,FastDB性能比SQLite提高了10倍左右。当然也许有读者怀疑加了备份 机制之后的性能,确实笔者没有进行这项测试,但是,需要注意的是,FastDB在数据库关闭时会强制sync到磁盘文件,但SQLite没有这种功能,同 时,在进行这项测试时,两种数据库都没有定时备份机制,因此该比较是公平的。

2.2.2 FastDB无盘模式

再来看第二种方案,FastDB采用无盘(通过编译选项控制生成DISKLESS版本)模式,此时FastDB初始化一段共享内存(shmat or mmap),这个初始大小通常很大,并且运行期不能扩展(无盘模式的劣势)。我们将初始共享内存设置为1G,得到的测试结果如下:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms (批量事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11544 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 7410 ms (逐条事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11560 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 134660 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 120167 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 250000 record: 23666 ms 
[SQLITE] Elapsed time for inserting 250000 record: 29110 ms

从上我们可以看出,无盘模式在大数据量下的表现与SQLite相近,这一点不是很好理解,需要研究DISKLESS的设计模式,理论上应该与 precommit模式性能相近。但是实践是检验真理的唯一标准。我们可以看出,磁盘模式的precommit方式性能表现卓越,不管从横向还是纵向来 看。

2.3 查询性能比较

下面的比较都使用磁盘模式的precommit方式,再来看索引查询的性能表现,测试时都是先插入十万条数据后,再分别对该十万条数据进行查询,需 要注意的是我们同时对FastDB是否增加HASH索引的性能进行了横向测评,FastDB增加HASH索引很简单,通过修改TYPE- DESCRIPTOR来完成,上面的class中改为TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED)));即为intKey增加了Hash索引。

E:\intrest\FastDB\PerfTest\Debug>perftest (FASTDB哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms 
[FASTDB] Elapsed time for 100000 index searches: 328 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10312 ms 
[SQLITE] Elapsed time for 100000 index searches: 10935 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(FASTDB非哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 577 ms 
[FASTDB] Elapsed time for 100000 index searches: 515 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10343 ms 
[SQLITE] Elapsed time for 100000 index searches: 9532 ms

从测试结果可以看出,查询十万条索引记录的效率,FastDB要比SQLite快20倍左右,并且在增加HASH索引后能够得到进一步的改善。

2.4 删除性能比较及综合表现

最后,我们在测试删除效率时,同时综合来看FastDB与SQLite之间插入、查询、删除的性能表现:

插入、查询、删除综合比较:

E:\intrest\FastDB\PerfTest\Debug>perftest(批量删除,FASTDB.removeall(),SQLITE.delete*) 
[FASTDB] Elapsed time for inserting 100000 record: 608 ms 
[FASTDB] Elapsed time for 100000 index searches: 687 ms 
[FASTDB] Elapsed time for deleting all 100000 records: 16 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11107 ms 
[SQLITE] Elapsed time for 100000 index searches: 10062 ms 
[SQLITE] Elapsed time for deleting all 100000 records: 16 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(逐条删除) 
[FASTDB] Elapsed time for inserting 100000 record: 593 ms 
[FASTDB] Elapsed time for 100000 index searches: 562 ms 
[FASTDB] Elapsed time for deleting all 100000 records one by one: 905 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10406 ms 
[SQLITE] Elapsed time for 100000 index searches: 10249 ms 
[SQLITE] Elapsed time for deleting all 100000 records one by one: 8923 ms

从上可以看出,就删除效率而言,批量删除的速度二者相近,而逐条删除时,十万条记录的删除累积,FastDB比SQLite快了10倍左右。

 

2.5 总结

优点:FastDB磁盘模式下,采用precommit方式,性能远远优于SQLite,并且FastDB提供了完善的备份恢复机制,能够保证数据 安全。FastDB的无盘模式在小数据量时表现优越,并且不会产生磁盘数据文件,也不能加载已经保存的数据库文件,看起来更像是针对嵌入式设备(如智能手 机、PDA等)开发的,对于这种场景可以考虑使用无盘模式。

缺点:FastDB目前能够SEARCH到的比较著名的应用是PingTel公司的开源统一通信产品SIPX,该产品采用的是FastDB的磁盘模 式。这可能多少与FastDB的完全授权模式有关,而SQLite采用的是GPL的不允许闭源的商业发布。当然主要还是社区的不成熟,这从Google Trends的搜索结果也能看出。社区的不成熟会带来学习成本的增加,这一点在选型时也需要考虑。

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn