suchen
HeimDatenbankMySQL-Tutorialgdb调试之---当update时第一个持有的Latch是什么Latch锁?

转载请注明出处 :http://blog.csdn.net/guoyjoe/article/details/18456937 1、查出当前会话所对应的系统进程号:SPID=7376,如下语句(在第一个窗口执行) gyj@OCM select spid from v$session s,v$process p where s.paddr=p.addr and sid in(select disti

转载请注明出处:http://blog.csdn.net/guoyjoe/article/details/18456937

1、查出当前会话所对应的系统进程号:SPID=7376,如下语句(在第一个窗口执行)

gyj@OCM> select spid from v$session s,v$process p where s.paddr=p.addr and sid in(select distinct sid from v$mystat);

SPID
------------------------
7376
[oracle@mydb ~]$ gdb $ORACLE_HOME/bin/oracle 7376
GNU gdb Fedora (6.8-27.el5)
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu"...
(no debugging symbols found)
Attaching to program: /u01/app/oracle/product/11.2.0/bin/oracle, process 7376
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libodm11.so...(no debugging symbols found)...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libodm11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libcell11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libcell11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libskgxp11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libskgxp11.so
Reading symbols from /lib64/librt.so.1...done.
Loaded symbols for /lib64/librt.so.1
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libnnz11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libnnz11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libclsra11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libclsra11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libdbcfg11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libdbcfg11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libhasgen11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libhasgen11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libskgxn2.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libskgxn2.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocr11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocr11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocrb11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocrb11.so
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libocrutl11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libocrutl11.so
Reading symbols from /usr/lib64/libaio.so.1...done.
Loaded symbols for /usr/lib64/libaio.so.1
Reading symbols from /lib64/libdl.so.2...done.
Loaded symbols for /lib64/libdl.so.2
Reading symbols from /lib64/libm.so.6...done.
Loaded symbols for /lib64/libm.so.6
Reading symbols from /lib64/libpthread.so.0...done.
[Thread debugging using libthread_db enabled]
[New Thread 0x2b0b8fef0910 (LWP 7376)]
Loaded symbols for /lib64/libpthread.so.0
Reading symbols from /lib64/libnsl.so.1...done.
Loaded symbols for /lib64/libnsl.so.1
Reading symbols from /lib64/libc.so.6...done.
Loaded symbols for /lib64/libc.so.6
Reading symbols from /lib64/ld-linux-x86-64.so.2...done.
Loaded symbols for /lib64/ld-linux-x86-64.so.2
Reading symbols from /usr/lib64/libnuma.so.1...done.
Loaded symbols for /usr/lib64/libnuma.so.1
Reading symbols from /lib64/libnss_files.so.2...done.
Loaded symbols for /lib64/libnss_files.so.2
Reading symbols from /u01/app/oracle/product/11.2.0/lib/libnque11.so...done.
Loaded symbols for /u01/app/oracle/product/11.2.0/lib/libnque11.so
0x0000003f0d40d290 in __read_nocancel () from /lib64/libpthread.so.0
(gdb)  

3、设一个断点,持有第一个Latch锁(预先知道函数kslgetl就是持有Latch的函数),并运行(c命令,即continue)(在第二个窗口执行)

(gdb) b kslgetl
Breakpoint 1 at 0x8f96376
(gdb) c
Continuing.

4、执行一个update语句,触发断点的操作,此时update被阻塞了(在第一个窗口执行) 

gyj@OCM> update gyj_test set name=&#39;AAAAA&#39; where id=1;

5、一执行updater操作,断点就停在这儿了(在第二个窗口执行)

Breakpoint 1, 0x0000000008f96376 in kslgetl ()
(gdb) 

6、我们先来看update时持有第一个Latch锁所对应函数kslgetl ()的第一个参数是什么?用命令info all-register显示寄存器(在第二个窗口执行)

(gdb) info all-register
rax            0x0      0
rbx            0x2000   8192
rcx            0xf27    3879
rdx            0x0      0
rsi            0x1      1
rdi            0x601082f0       1611694832
rbp            0x7fff1c5754d0   0x7fff1c5754d0
rsp            0x7fff1c5754d0   0x7fff1c5754d0
r8             0xf27    3879
r9             0xbaf3fa0        196034464
r10            0x0      0
r11            0xf27    3879
r12            0x927db800       2457712640
r13            0x601082f0       1611694832
r14            0x1      1
r15            0x1      1
rip            0x8f96376        0x8f96376 <kslgetl+4>
eflags         0x246    [ PF ZF IF ]
cs             0x33     51
ss             0x2b     43
ds             0x0      0
es             0x0      0
fs             0x0      0
gs             0x0      0
st0            0        (raw 0x00000000000000000000)
---Type <return> to continue, or q <return> to quit---
st1            0        (raw 0x00000000000000000000)
st2            0        (raw 0x00000000000000000000)
st3            0        (raw 0x00000000000000000000)
st4            0        (raw 0x00000000000000000000)
st5            0        (raw 0x00000000000000000000)
st6            333296   (raw 0x4011a2be000000000000)
st7            300384   (raw 0x401192ac000000000000)
fctrl          0x27f    639
fstat          0x0      0
ftag           0xffff   65535
fiseg          0x0      0
fioff          0x9394e95        154750613
foseg          0x7fff   32767
fooff          0x1c573f50       475479888
fop            0x0      0
xmm0           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm1           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm2           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm3           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x8000000000000000, 0x8000000000000000}, v16_int8 = {0xfe, 0xff, 0xff, 0xff, 
    0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, v8_int16 = {0xfffe, 0xffff, 0xffff, 0xffff, 0xfffe, 0xffff, 
    0xffff, 0xffff}, v4_int32 = {0xfffffffe, 0xffffffff, 0xfffffffe, 0xffffffff}, v2_int64 = {0xfffffffffffffffe, 0xfffffffffffffffe}, 
  uint128 = 0xfffffffffffffffefffffffffffffffe}
---Type <return> to continue, or q <return> to quit---
xmm4           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm5           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x32, 0xa3, 0xd7, 0x2, 0x0 <repeats 12 times>}, 
  v8_int16 = {0xa332, 0x2d7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x2d7a332, 0x0, 0x0, 0x0}, v2_int64 = {0x2d7a332, 0x0}, 
  uint128 = 0x00000000000000000000000002d7a332}
xmm6           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm7           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0xda, 0x87, 0xd7, 0x2, 0x0 <repeats 12 times>}, 
  v8_int16 = {0x87da, 0x2d7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x2d787da, 0x0, 0x0, 0x0}, v2_int64 = {0x2d787da, 0x0}, 
  uint128 = 0x00000000000000000000000002d787da}
xmm8           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm9           {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm10          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm11          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm12          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x18, 0xe, 0x73, 0x90, 0xb, 0x2b, 0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, v8_int16 = {0xe18, 0x9073, 0x2b0b, 0x0, 0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x90730e18, 0x2b0b, 0x0, 0x0}, 
  v2_int64 = {0x2b0b90730e18, 0x0}, uint128 = 0x000000000000000000002b0b90730e18}
xmm13          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
xmm14          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
---Type <return> to continue, or q <return> to quit---
xmm15          {v4_float = {0x0, 0x0, 0x0, 0x0}, v2_double = {0x0, 0x0}, v16_int8 = {0x0 <repeats 16 times>}, v8_int16 = {0x0, 0x0, 0x0, 0x0, 
    0x0, 0x0, 0x0, 0x0}, v4_int32 = {0x0, 0x0, 0x0, 0x0}, v2_int64 = {0x0, 0x0}, uint128 = 0x00000000000000000000000000000000}
mxcsr          0x1fa1   [ IE PE IM DM ZM OM UM PM ]
(gdb) 

7、rdi/edi是第一个参数, rsi/esi是第二个参数,贴出info all-register命令所显示函数kslgetl ()的两个参数,如下

8、找到第一个参数0x601082f0,注意因我的OS是64位,前面要补8个0,在v$latch_children视图中地址的字母要大写,

sys@OCM>  select  name from v$latch_children where addr=&#39;00000000601082F0&#39;;

NAME
----------------------------------------------------------------
shared pool

10、发现Latch锁就是shared pool Latch。

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wann sollten Sie einen zusammengesetzten Index gegenüber mehreren Einspaltindizes verwenden?Wann sollten Sie einen zusammengesetzten Index gegenüber mehreren Einspaltindizes verwenden?Apr 11, 2025 am 12:06 AM

In der Datenbankoptimierung sollten Indexierungsstrategien gemäß Abfrageanforderungen ausgewählt werden: 1. Wenn die Abfrage mehrere Spalten beinhaltet und die Reihenfolge der Bedingungen festgelegt ist, verwenden Sie zusammengesetzte Indizes. 2. Wenn die Abfrage mehrere Spalten beinhaltet, aber die Reihenfolge der Bedingungen nicht festgelegt ist, verwenden Sie mehrere einspaltige Indizes. Zusammengesetzte Indizes eignen sich zur Optimierung von Multi-Säulen-Abfragen, während Einspaltindizes für Einspalten-Abfragen geeignet sind.

Wie identifizieren und optimieren Sie langsame Abfragen in MySQL? (Langsames Abfrageprotokoll, Performance_schema)Wie identifizieren und optimieren Sie langsame Abfragen in MySQL? (Langsames Abfrageprotokoll, Performance_schema)Apr 10, 2025 am 09:36 AM

Um die MySQL -Abfrage zu optimieren, müssen SlowQuerylog und Performance_Schema verwendet werden: 1. Aktivieren Sie SlowQuerylog und setzen Sie Schwellenwerte, um langsame Abfragen aufzuzeichnen; 2. Verwenden Sie Performance_Schema, um die Details zur Ausführung von Abfragen zu analysieren, Leistungs Engpässe zu finden und zu optimieren.

MySQL und SQL: Wesentliche Fähigkeiten für EntwicklerMySQL und SQL: Wesentliche Fähigkeiten für EntwicklerApr 10, 2025 am 09:30 AM

MySQL und SQL sind wesentliche Fähigkeiten für Entwickler. 1.MYSQL ist ein Open -Source -Relational Database Management -System, und SQL ist die Standardsprache, die zum Verwalten und Betrieb von Datenbanken verwendet wird. 2.MYSQL unterstützt mehrere Speichermotoren durch effiziente Datenspeicher- und Abruffunktionen, und SQL vervollständigt komplexe Datenoperationen durch einfache Aussagen. 3. Beispiele für die Nutzung sind grundlegende Abfragen und fortgeschrittene Abfragen wie Filterung und Sortierung nach Zustand. 4. Häufige Fehler umfassen Syntaxfehler und Leistungsprobleme, die durch Überprüfung von SQL -Anweisungen und Verwendung von Erklärungsbefehlen optimiert werden können. 5. Leistungsoptimierungstechniken umfassen die Verwendung von Indizes, die Vermeidung vollständiger Tabellenscanning, Optimierung von Join -Operationen und Verbesserung der Code -Lesbarkeit.

Beschreiben Sie den asynchronen Master-Slave-Replikationsprozess von MySQL.Beschreiben Sie den asynchronen Master-Slave-Replikationsprozess von MySQL.Apr 10, 2025 am 09:30 AM

MySQL Asynchronous Master-Slave-Replikation ermöglicht die Datensynchronisation durch Binlog, die die Leseleistung und die hohe Verfügbarkeit verbessert. 1) Der Master -Server -Datensatz ändert sich am Binlog; 2) Der Slave -Server liest Binlog über E/A -Threads; 3) Der Server -SQL -Thread wendet BinLog an, um Daten zu synchronisieren.

MySQL: Einfache Konzepte für einfaches LernenMySQL: Einfache Konzepte für einfaches LernenApr 10, 2025 am 09:29 AM

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

MySQL: Eine benutzerfreundliche Einführung in DatenbankenMySQL: Eine benutzerfreundliche Einführung in DatenbankenApr 10, 2025 am 09:27 AM

Die Installation und die grundlegenden Vorgänge von MySQL umfassen: 1. MySQL herunterladen und installieren, das Stammbenutzerkennwort festlegen. 2. Verwenden Sie SQL -Befehle, um Datenbanken und Tabellen zu erstellen, wie z. 3. Ausführen von CRUD -Operationen, verwenden Sie Einfügen, auswählen, aktualisieren, Befehle löschen; 4. Erstellen Sie Indizes und gespeicherte Verfahren, um die Leistung zu optimieren und komplexe Logik zu implementieren. Mit diesen Schritten können Sie MySQL -Datenbanken von Grund auf neu erstellen und verwalten.

Wie funktioniert der InnoDB Puffer Pool und warum ist es für die Leistung von entscheidender Bedeutung?Wie funktioniert der InnoDB Puffer Pool und warum ist es für die Leistung von entscheidender Bedeutung?Apr 09, 2025 am 12:12 AM

InnoDbbufferpool verbessert die Leistung von MySQL -Datenbanken durch das Laden von Daten und Indexseiten in den Speicher. 1) Die Datenseite wird in das Bufferpool geladen, um die Festplatten -E/A zu reduzieren. 2) Schmutzige Seiten sind regelmäßig markiert und auf der Festplatte aktualisiert. 3) LRU -Algorithmusverwaltungsdatenseite Eliminierung. 4) Der Lese-Out-Mechanismus lädt die möglichen Datenseiten im Voraus.

MySQL: Die einfache Datenverwaltung für AnfängerMySQL: Die einfache Datenverwaltung für AnfängerApr 09, 2025 am 12:07 AM

MySQL ist für Anfänger geeignet, da es einfach zu installieren, leistungsfähig und einfach zu verwalten ist. 1. Einfache Installation und Konfiguration, geeignet für eine Vielzahl von Betriebssystemen. 2. Unterstützung grundlegender Vorgänge wie Erstellen von Datenbanken und Tabellen, Einfügen, Abfragen, Aktualisieren und Löschen von Daten. 3. Bereitstellung fortgeschrittener Funktionen wie Join Operations und Unterabfragen. 4. Die Leistung kann durch Indexierung, Abfrageoptimierung und Tabellenpartitionierung verbessert werden. 5. Backup-, Wiederherstellungs- und Sicherheitsmaßnahmen unterstützen, um die Datensicherheit und -konsistenz zu gewährleisten.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)