本文介绍了几种不同的 批量 导入 数据 的方法、各种方法相应的实例及其所需的时间长短…… 如果需要向 数据 库专区 href="http://dev.yesky.com/devsjk" target=_blank>SQL Server 批量 导入 数据 ,根据 导入 的选项和表中的索引设置, 数据 导入 的时间可
本文介绍了几种不同的批量导入数据的方法、各种方法相应的实例及其所需的时间长短……
如果需要向数据库专区 href="http://dev.yesky.com/devsjk" target=_blank>SQL Server批量导入数据,根据导入的选项和表中的索引设置,数据导入的时间可能会在不同情况下相差甚远。如何能够把批量导入的过程尽量少花时间呢?在这里我们将会介绍几种不同的批量导入数据的方法、各种方法相应的实例及其所需的时间长短。
在我们的测试中我们采取了六种不同的数据导入方法:
1. 表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index)
2. 表只含有一个聚集索引
3. 表不含有任何索引
4. 表不含有任何索引并且有TABLOCK指示
5. 表只含有一个聚集索引并且有TABLOCK指示
6. 表含有一个聚集索引一个聚集索引并且有TABLOCK指示
另外,测试所用数据库在测试前设置为批日志恢复模式。
这些测试中,每次迭代后数据库和日志都会清理日志文件,而且实施每一个步骤之前都将表删除,然后重新创建新表。
测试一
第一次运行是使用一个含有121317行的数据集和一个空表。每次运行之前都会重新创建符合测试的表。
如下图结果所示,我们可以看出根据你用来导入数据的不同程序,运行时间有所不同。
ID |
测试 |
运行(1) |
运行(2) |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
5.1 |
5.3 |
2 |
表只含有一个聚集索引 |
3.2 |
3.0 |
3 |
表不含有任何索引 |
1.4 |
1.4 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
1.2 |
1.3 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
2.8 |
2.5 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
4.1 |
3.9 |
测试2
第二次运行是使用一个含有242634行的数据集和一个空表。每次运行之前都会重新创建符合测试的表。
我们可以看到这些运行的时间有一些差别。
ID |
Test |
运行(1) |
运行(2) |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
14.0 |
13.8 |
2 |
表只含有一个聚集索引 |
6.9 |
7.3 |
3 |
表不含有任何索引 |
2.7 |
2.7 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
2.5 |
2.5 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
5.6 |
5.5 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
8.4 |
8.7 |
测试三
在这个测试中,我们运行了两个导入过程。第一次导入使用了一个含有121317行和一个空表,然后在同一个表中导入另外121317条记录。每次运行之前都会重新创建符合测试的表。
ID |
测试 |
运行(1) |
运行(2) |
总时间 |
1 |
表含有一个聚集索引(clustered index)和两个非聚集索引(non-clustered index) |
8.4 |
7.7 |
16.1 |
2 |
表只含有一个聚集索引 |
3.5 |
3.2 |
6.7 |
3 |
表不含有任何索引 |
1.5 |
1.4 |
2.9 |
4 |
表只含有一个聚集索引并且有TABLOCK指示 |
1.3 |
1.3 |
2.6 |
5 |
表只含有一个聚集索引并且有TABLOCK指示 |
3.1 |
4.0 |
7.1 |
6 |
表含有一个聚集索引一个聚集索引并且有TABLOCK指示 |
4.0 |
8.5 |
12.5 |
总结
我们可以从以上测试的结果看出,各种不同的条件会影响数据导入所用的时间。因此,如果想要更快地导入数据,可以导入不含任何索引的表,在导入完成之后再建立索引。不过我们的测试中没有检测在导入完成后建立索引所需要的时间。
另外,还要注意确保你的数据和日志文件有足够的空间来完成这个导入过程而不会导致文件自动增长。文件自动增长会极大地影响总导入的速度。

Die MySQL -Idium -Kardinalität hat einen signifikanten Einfluss auf die Abfrageleistung: 1. Hoher Kardinalitätsindex kann den Datenbereich effektiver einschränken und die Effizienz der Abfrage verbessern. 2. Niedriger Kardinalitätsindex kann zu einem vollständigen Tischscannen führen und die Abfrageleistung verringern. 3. Im gemeinsamen Index sollten hohe Kardinalitätssequenzen vorne platziert werden, um die Abfrage zu optimieren.

Der MySQL -Lernpfad umfasst Grundkenntnisse, Kernkonzepte, Verwendungsbeispiele und Optimierungstechniken. 1) Verstehen Sie grundlegende Konzepte wie Tabellen, Zeilen, Spalten und SQL -Abfragen. 2) Lernen Sie die Definition, die Arbeitsprinzipien und die Vorteile von MySQL kennen. 3) Master grundlegende CRUD -Operationen und fortgeschrittene Nutzung wie Indizes und gespeicherte Verfahren. 4) KON -Debugging- und Leistungsoptimierungsvorschläge, wie z. B. rationale Verwendung von Indizes und Optimierungsabfragen. In diesen Schritten haben Sie einen vollen Verständnis für die Verwendung und Optimierung von MySQL.

Die realen Anwendungen von MySQL umfassen grundlegende Datenbankdesign und komplexe Abfrageoptimierung. 1) Grundnutzung: Wird zum Speichern und Verwalten von Benutzerdaten verwendet, z. B. das Einfügen, Abfragen, Aktualisieren und Löschen von Benutzerinformationen. 2) Fortgeschrittene Nutzung: Verwandte komplexe Geschäftslogik wie Auftrags- und Bestandsverwaltung von E-Commerce-Plattformen. 3) Leistungsoptimierung: Verbesserung der Leistung durch rationale Verwendung von Indizes, Partitionstabellen und Abfrage -Caches.

SQL -Befehle in MySQL können in Kategorien wie DDL, DML, DQL und DCL unterteilt werden und werden verwendet, um Datenbanken und Tabellen zu erstellen, zu ändern, zu löschen, Daten einfügen, aktualisieren, Daten löschen und komplexe Abfragebetriebe durchführen. 1. Die grundlegende Verwendung umfasst die Erstellungstabelle erstellbar, InsertInto -Daten einfügen und Abfragedaten auswählen. 2. Die erweiterte Verwendung umfasst die Zusammenarbeit mit Tabellenverbindungen, Unterabfragen und GroupBy für die Datenaggregation. 3.. Häufige Fehler wie Syntaxfehler, Datentyp -Nichtübereinstimmung und Berechtigungsprobleme können durch Syntaxprüfung, Datentypkonvertierung und Berechtigungsmanagement debuggen. 4. Vorschläge zur Leistungsoptimierung umfassen die Verwendung von Indizes, die Vermeidung vollständiger Tabellenscanning, Optimierung von Join -Operationen und Verwendung von Transaktionen, um die Datenkonsistenz sicherzustellen.

InnoDB erreicht Atomizität durch Ungewöhnung, Konsistenz und Isolation durch Verriegelungsmechanismus und MVCC sowie Persistenz durch Redolog. 1) Atomizität: Verwenden Sie Unolog, um die Originaldaten aufzuzeichnen, um sicherzustellen, dass die Transaktion zurückgerollt werden kann. 2) Konsistenz: Stellen Sie die Datenkonsistenz durch Verriegelung auf Zeilenebene und MVCC sicher. 3) Isolierung: Unterstützt mehrere Isolationsniveaus und wird standardmäßig WiederholungSead verwendet. 4) Persistenz: Verwenden Sie Redolog, um Modifikationen aufzuzeichnen, um sicherzustellen, dass die Daten für lange Zeit gespeichert werden.

Die Position von MySQL in Datenbanken und Programmierung ist sehr wichtig. Es handelt sich um ein Open -Source -Verwaltungssystem für relationale Datenbankverwaltung, das in verschiedenen Anwendungsszenarien häufig verwendet wird. 1) MySQL bietet effiziente Datenspeicher-, Organisations- und Abruffunktionen und unterstützt Systeme für Web-, Mobil- und Unternehmensebene. 2) Es verwendet eine Client-Server-Architektur, unterstützt mehrere Speichermotoren und Indexoptimierung. 3) Zu den grundlegenden Verwendungen gehören das Erstellen von Tabellen und das Einfügen von Daten, und erweiterte Verwendungen beinhalten Multi-Table-Verknüpfungen und komplexe Abfragen. 4) Häufig gestellte Fragen wie SQL -Syntaxfehler und Leistungsprobleme können durch den Befehl erklären und langsam abfragen. 5) Die Leistungsoptimierungsmethoden umfassen die rationale Verwendung von Indizes, eine optimierte Abfrage und die Verwendung von Caches. Zu den Best Practices gehört die Verwendung von Transaktionen und vorbereiteten Staten

MySQL ist für kleine und große Unternehmen geeignet. 1) Kleinunternehmen können MySQL für das grundlegende Datenmanagement verwenden, z. B. das Speichern von Kundeninformationen. 2) Große Unternehmen können MySQL verwenden, um massive Daten und komplexe Geschäftslogik zu verarbeiten, um die Abfrageleistung und die Transaktionsverarbeitung zu optimieren.

InnoDB verhindert effektiv das Phantom-Lesen durch den Mechanismus für den nächsten Kleien. 1) Nächstschlüsselmesser kombiniert Zeilensperr- und Gap-Sperre, um Datensätze und deren Lücken zu sperren, um zu verhindern, dass neue Datensätze eingefügt werden. 2) In praktischen Anwendungen kann durch Optimierung der Abfragen und Anpassung der Isolationsstufen die Verringerungswettbewerb reduziert und die Gleichzeitleistung verbessert werden.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Dreamweaver CS6
Visuelle Webentwicklungstools