Heim >Datenbank >MySQL-Tutorial >【原创】PostgreSQLhstore列性能提升一例

【原创】PostgreSQLhstore列性能提升一例

WBOY
WBOYOriginal
2016-06-07 14:52:471186Durchsuche

PostgreSQL 支持hstore 来存放KEY-VALUE这类数据, 其实也类似于ARRAY或者JSON类型。 要高效的使用这类数据,当然离不开高效的索引。我们今天就来看看两类不同的索引对于同一种检索请求的性能问题。 假如我们有这样一个原始表,基于str1字段有一个BTREE索引

PostgreSQL 支持hstore 来存放KEY->VALUE这类数据, 其实也类似于ARRAY或者JSON类型。  要高效的使用这类数据,当然离不开高效的索引。我们今天就来看看两类不同的索引对于同一种检索请求的性能问题。


假如我们有这样一个原始表,基于str1字段有一个BTREE索引。

t_girl=# \d status_check;
          Table "ytt.status_check"
 Column |         Type          | Modifiers 
--------+-----------------------+-----------
 is_yes | boolean               | not null
 str1   | character varying(20) | not null
 str2   | character varying(20) | not null
Indexes:
    "index_status_check_str1" btree (str1)



里面有10W条记录。 数据大概如下,

t_girl=# select * from status_check limit 2;
 is_yes | str1 |         str2         
--------+------+----------------------
 f      | 0    | cfcd208495d565ef66e7
 t      | 1    | c4ca4238a0b923820dcc
(2 rows)
Time: 0.617 ms
t_girl=#


存放hstore类型的status_check_hstore 表结构,基于str1_str2字段有一个GIST索引。

 Table "ytt.status_check_hstore"
  Column   |  Type   | Modifiers 
-----------+---------+-----------
 is_yes    | boolean | 
 str1_str2 | hstore  | 
Indexes:
    "idx_str_str2_gist" gist (str1_str2) 
t_girl=# select * from status_check_hstore limit 2;
 is_yes |          str1_str2          
--------+-----------------------------
 f      | "0"=>"cfcd208495d565ef66e7"
 t      | "1"=>"c4ca4238a0b923820dcc"
(2 rows)
Time: 39.874 ms


接下来我们要得到跟查询原始表一样的结果,当然原始表的查询非常高效。 表语句以及结果如下,

t_girl=# select * from status_check where str1 in ('10','23','33');        
 is_yes | str1 |         str2         
--------+------+----------------------
 t      | 10   | d3d9446802a44259755d
 t      | 23   | 37693cfc748049e45d87
 f      | 33   | 182be0c5cdcd5072bb18
(3 rows)
Time: 0.690 ms


上面的语句用了不到1毫秒。


接下来我们对hstore表进行查询,

t_girl=# select is_yes,skeys(str1_str2),svals(str1_str2) from status_check_hstore where str1_str2 ?| array['10','23','33'];
 is_yes | skeys |        svals         
--------+-------+----------------------
 t      | 10    | d3d9446802a44259755d
 t      | 23    | 37693cfc748049e45d87
 f      | 33    | 182be0c5cdcd5072bb18
(3 rows)
Time: 40.256 ms

我的天,比原始表的查询慢了几十倍。


看下查询计划,把所有行都扫描了一遍。

                                    QUERY PLAN                                     
-----------------------------------------------------------------------------------
 Bitmap Heap Scan on status_check_hstore  (cost=5.06..790.12 rows=100000 width=38)
   Recheck Cond: (str1_str2 ?| '{10,23,33}'::text[])
   ->  Bitmap Index Scan on idx_str_str2_gist  (cost=0.00..5.03 rows=100 width=0)
         Index Cond: (str1_str2 ?| '{10,23,33}'::text[])
(4 rows)
Time: 0.688 ms


我们想办法来优化这条语句, 如果把这条语句变成跟原始语句一样的话,那么是否就可以用到BTREE索引了?

接下来,建立一个基于BTREE的函数索引,

t_girl=# create index idx_str1_str2_akeys on status_check_hstore using btree (array_to_string(akeys(str1_str2),','));
CREATE INDEX
Time: 394.123 ms
OK,变化语句来执行下同样的检索,
t_girl=# select is_yes,skeys(str1_str2),svals(str1_str2) from status_check_hstore where array_to_string(akeys(str1_str2),',') in ('10','23','33');        
 is_yes | skeys |        svals         
--------+-------+----------------------
 t      | 10    | d3d9446802a44259755d
 t      | 23    | 37693cfc748049e45d87
 f      | 33    | 182be0c5cdcd5072bb18
(3 rows)
Time: 0.727 ms


这次和原始查询速度一样快了。


Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn