• 技术文章 >数据库 >mysql教程

    mysql查询慢的因素除了索引,还有什么?

    青灯夜游青灯夜游2022-07-19 20:22:49转载399

    我熟练应用ctrl c和ctrl v 开发curd代码好多年了。

    mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。

    遇到这种问题,我们一般也会想到是因为索引。

    那除开索引之外,还有哪些因素会导致数据库查询变慢呢?

    有哪些操作,可以提升mysql的查询能力呢?

    今天这篇文章,我们就来聊聊会导致数据库查询变慢的场景有哪些,并给出原因和解决方案。

    数据库查询流程

    我们先来看下,一条查询语句下来,会经历哪些流程。

    比如我们有一张数据库表

    CREATE TABLE `user` (
      `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
      `name` varchar(100) NOT NULL DEFAULT '' COMMENT '名字',
      `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
      `gender` int(8) NOT NULL DEFAULT '0' COMMENT '性别',
      PRIMARY KEY (`id`),
      KEY `idx_age` (`age`),
      KEY `idx_gender` (`gender`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

    我们平常写的应用代码(go或C++之类的),这时候就叫客户端了。

    客户端底层会带着账号密码,尝试向mysql建立一条TCP长链接。

    mysql的连接管理模块会对这条连接进行管理。

    建立连接后,客户端执行一条查询sql语句。 比如:

    select * from user where gender = 1 and age = 100;

    客户端会将sql语句通过网络连接给mysql。

    mysql收到sql语句后,会在分析器中先判断下SQL语句有没有语法错误,比如select,如果少打一个l,写成slect,则会报错You have an error in your SQL syntax;。这个报错对于我这样的手残党来说可以说是很熟悉了。

    接下来是优化器,在这里会根据一定的规则选择该用什么索引

    之后,才是通过执行器去调用存储引擎的接口函数。

    Mysql架构

    存储引擎类似于一个个组件,它们才是mysql真正获取一行行数据并返回数据的地方,存储引擎是可以替换更改的,既可以用不支持事务的MyISAM,也可以替换成支持事务的Innodb。这个可以在建表的时候指定。比如

    CREATE TABLE `user` (
      ...
    ) ENGINE=InnoDB;

    现在最常用的是InnoDB

    我们就重点说这个。

    InnoDB中,因为直接操作磁盘会比较慢,所以加了一层内存提提速,叫buffer pool,这里面,放了很多内存页,每一页16KB,有些内存页放的是数据库表里看到的那种一行行的数据,有些则是放的索引信息。

    bufferPool与磁盘

    查询SQL到了InnoDB中。会根据前面优化器里计算得到的索引,去查询相应的索引页,如果不在buffer pool里则从磁盘里加载索引页。再通过索引页加速查询,得到数据页的具体位置。如果这些数据页不在buffer pool中,则从磁盘里加载进来。

    这样我们就得到了我们想要的一行行数据。

    索引页与磁盘页的关系

    最后将得到的数据结果返回给客户端。

    慢查询分析

    如果上面的流程比较慢的话,我们可以通过开启profiling看到流程慢在哪。

    mysql> set profiling=ON;
    Query OK, 0 rows affected, 1 warning (0.00 sec)
    
    mysql> show variables like 'profiling';
    +---------------+-------+
    | Variable_name | Value |
    +---------------+-------+
    | profiling     | ON    |
    +---------------+-------+
    1 row in set (0.00 sec)

    然后正常执行sql语句。

    这些SQL语句的执行时间都会被记录下来,此时你想查看有哪些语句被记录下来了,可以执行 show profiles;

    mysql> show profiles;
    +----------+------------+---------------------------------------------------+
    | Query_ID | Duration   | Query                                             |
    +----------+------------+---------------------------------------------------+
    |        1 | 0.06811025 | select * from user where age>=60                  |
    |        2 | 0.00151375 | select * from user where gender = 2 and age = 80  |
    |        3 | 0.00230425 | select * from user where gender = 2 and age = 60  |
    |        4 | 0.00070400 | select * from user where gender = 2 and age = 100 |
    |        5 | 0.07797650 | select * from user where age!=60                  |
    +----------+------------+---------------------------------------------------+
    5 rows in set, 1 warning (0.00 sec)

    关注下上面的query_id,比如select * from user where age>=60对应的query_id是1,如果你想查看这条SQL语句的具体耗时,那么可以执行以下的命令。

    mysql> show profile for query 1;
    +----------------------+----------+
    | Status               | Duration |
    +----------------------+----------+
    | starting             | 0.000074 |
    | checking permissions | 0.000010 |
    | Opening tables       | 0.000034 |
    | init                 | 0.000032 |
    | System lock          | 0.000027 |
    | optimizing           | 0.000020 |
    | statistics           | 0.000058 |
    | preparing            | 0.000018 |
    | executing            | 0.000013 |
    | Sending data         | 0.067701 |
    | end                  | 0.000021 |
    | query end            | 0.000015 |
    | closing tables       | 0.000014 |
    | freeing items        | 0.000047 |
    | cleaning up          | 0.000027 |
    +----------------------+----------+
    15 rows in set, 1 warning (0.00 sec)

    通过上面的各个项,大家就可以看到具体耗时在哪。比如从上面可以看出Sending data的耗时最大,这个是指执行器开始查询数据并将数据发送给客户端的耗时,因为我的这张表符合条件的数据有好几万条,所以这块耗时最大,也符合预期。

    一般情况下,我们开发过程中,耗时大部分时候都在Sending data阶段,而这一阶段里如果慢的话,最容易想到的还是索引相关的原因。

    索引相关原因

    索引相关的问题,一般能用explain命令帮助分析。通过它能看到用了哪些索引,大概会扫描多少行之类的信息。

    mysql会在优化器阶段里看下选择哪个索引,查询速度会更快。

    一般主要考虑几个因素,比如:

    回到show profile中提到的sql语句,我们使用explain select * from user where age>=60 分析一下。

    explain sql

    上面的这条语句,使用的type为ALL,意味着是全表扫描possible_keys是指可能用得到的索引,这里可能使用到的索引是为age建的普通索引,但实际上数据库使用的索引是在key那一列,是NULL。也就是说这句sql不走索引,全表扫描

    这个是因为数据表里,符合条件的数据行数(rows)太多,如果使用age索引,那么需要将它们从age索引中读出来,并且age索引是普通索引,还需要回表找到对应的主键才能找到对应的数据页。算下来还不如直接走主键划算。于是最终选择了全表扫描。

    当然上面只是举了个例子,实际上,mysql执行sql时,不用索引或者用的索引不符合我们预期这件事经常发生,索引失效的场景有很多,比如用了不等号,隐式转换等,这个相信大家背八股文的时候也背过不少了,我也不再赘述。

    聊两个生产中容易遇到的问题吧。

    索引不符合预期

    实际开发中有些情况比较特殊,比如有些数据库表一开始数据量小,索引少,执行sql时,确实使用了符合你预期的索引。但随时时间边长,开发的人变多了,数据量也变大了,甚至还可能会加入一些其他重复多余的索引,就有可能出现用着用着,用到了不符合你预期的其他索引了。从而导致查询突然变慢。

    这种问题,也好解决,可以通过force index指定索引。比如

    force index指定索引

    通过explain可以看出,加了force index之后,sql就选用了idx_age这个索引了。

    走了索引还是很慢

    有些sql,用explain命令看,明明是走索引的,但还是很慢。一般是两种情况:

    第一种是索引区分度太低,比如网页全路径的url链接,这拿来做索引,一眼看过去全都是同一个域名,如果前缀索引的长度建得不够长,那这走索引跟走全表扫描似的,正确姿势是尽量让索引的区分度更高,比如域名去掉,只拿后面URI部分去做索引。

    索引前缀区分度太低

    第二种是索引中匹配到的数据太大,这时候需要关注的是explain里的rows字段了。

    它是用于预估这个查询语句需要查的行数的,它不一定完全准确,但可以体现个大概量级。

    当它很大时,一般常见的是下面几种情况。

    连接数过小

    索引相关的原因我们聊完了,我们来聊聊,除了索引之外,还有哪些因素会限制我们的查询速度的。

    我们可以看到,mysql的server层里有个连接管理,它的作用是管理客户端和mysql之间的长连接。

    正常情况下,客户端与server层如果只有一条连接,那么在执行sql查询之后,只能阻塞等待结果返回,如果有大量查询同时并发请求,那么后面的请求都需要等待前面的请求执行完成后,才能开始执行。

    连接过少会导致sql阻塞

    因此很多时候我们的应用程序,比如go或java这些,会打印出sql执行了几分钟的日志,但实际上你把这条语句单独拎出来执行,却又是毫秒级别的。 这都是因为这些sql语句在等待前面的sql执行完成。

    怎么解决呢?

    如果我们能多建几条连接,那么请求就可以并发执行,后面的连接就不用等那么久了。

    增加连接可以加快执行sql

    而连接数过小的问题,受数据库和客户端两侧同时限制

    数据库连接数过小

    mysql的最大连接数默认是100, 最大可以达到16384

    可以通过设置mysql的max_connections参数,更改数据库的最大连接数。

    mysql> set global max_connections= 500;
    Query OK, 0 rows affected (0.00 sec)
    
    mysql> show variables like 'max_connections';
    +-----------------+-------+
    | Variable_name   | Value |
    +-----------------+-------+
    | max_connections | 500   |
    +-----------------+-------+
    1 row in set (0.00 sec)

    上面的操作,就把最大连接数改成了500。

    应用侧连接数过小

    数据库连接大小是调整过了,但貌似问题还是没有变化?还是有很多sql执行达到了几分钟,甚至超时?

    那有可能是因为你应用侧(go,java写的应用,也就是mysql的客户端)的连接数也过小。

    应用侧与mysql底层的连接,是基于TCP协议的长链接,而TCP协议,需要经过三次握手和四次挥手来实现建连和释放。如果我每次执行sql都重新建立一个新的连接的话,那就要不断握手和挥手,这很耗时。所以一般会建立一个长连接池,连接用完之后,塞到连接池里,下次要执行sql的时候,再从里面捞一条连接出来用,非常环保。

    连接池原理

    我们一般写代码的时候,都会通过第三方的orm库来对数据库进行操作,而成熟的orm库,百分之一千万都会有个连接池。

    而这个连接池,一般会有个大小。这个大小就控制了你的连接数最大值,如果说你的连接池太小,都还没有数据库的大,那调了数据库的最大连接数也没啥作用。

    一般情况下,可以翻下你使用的orm库的文档,看下怎么设置这个连接池的大小,就几行代码的事情,改改就好。比如go语言里的gorm里是这么设置的

    func Init() {
      db, err := gorm.Open(mysql.Open(conn), config)
      sqlDB, err := db.DB()
      // SetMaxIdleConns 设置空闲连接池中连接的最大数量
      sqlDB.SetMaxIdleConns(200)
      // SetMaxOpenConns 设置打开数据库连接的最大数量
      sqlDB.SetMaxOpenConns(1000)
    }

    buffer pool太小

    连接数是上去了,速度也提升了。

    曾经遇到过面试官会追问,有没有其他办法可以让速度更快呢?

    那必须要眉头紧锁,假装思考,然后说:有的

    我们在前面的数据库查询流程里,提到了进了innodb之后,会有一层内存buffer pool,用于将磁盘数据页加载到内存页中,只要查询到buffer pool里有,就可以直接返回,否则就要走磁盘IO,那就慢了。

    也就是说,如果我的buffer pool 越大,那我们能放的数据页就越多,相应的,sql查询时就更可能命中buffer pool,那查询速度自然就更快了。

    可以通过下面的命令查询到buffer pool的大小,单位是Byte

    mysql> show global variables like 'innodb_buffer_pool_size';
    +-------------------------+-----------+
    | Variable_name           | Value     |
    +-------------------------+-----------+
    | innodb_buffer_pool_size | 134217728 |
    +-------------------------+-----------+
    1 row in set (0.01 sec)

    也就是128Mb

    如果想要调大一点。可以执行

    mysql> set global innodb_buffer_pool_size = 536870912;
    Query OK, 0 rows affected (0.01 sec)
    
    mysql> show global variables like 'innodb_buffer_pool_size';
    +-------------------------+-----------+
    | Variable_name           | Value     |
    +-------------------------+-----------+
    | innodb_buffer_pool_size | 536870912 |
    +-------------------------+-----------+
    1 row in set (0.01 sec)

    这样就把buffer pool增大到512Mb了。

    但是吧,如果buffer pool大小正常,只是别的原因导致的查询变慢,那改buffer pool毫无意义。

    但问题又来了。

    怎么知道buffer pool是不是太小了?

    这个我们可以看buffer pool的缓存命中率

    查看buffer pool命中率

    通过 show status like 'Innodb_buffer_pool_%';可以看到跟buffer pool有关的一些信息。

    Innodb_buffer_pool_read_requests表示读请求的次数。

    Innodb_buffer_pool_reads 表示从物理磁盘中读取数据的请求次数。

    所以buffer pool的命中率就可以这样得到:

    buffer pool 命中率 = 1 - (Innodb_buffer_pool_reads/Innodb_buffer_pool_read_requests) * 100%

    比如我上面截图里的就是,1 - (405/2278354) = 99.98%。可以说命中率非常高了。

    一般情况下buffer pool命中率都在99%以上,如果低于这个值,才需要考虑加大innodb buffer pool的大小。

    当然,还可以把这个命中率做到监控里,这样半夜sql变慢了,早上上班还能定位到原因,就很舒服。

    还有哪些骚操作?

    前面提到的是在存储引擎层里加入了buffer pool用于缓存内存页,这样可以加速查询。

    那同样的道理,server层也可以加个缓存,直接将第一次查询的结果缓存下来,这样下次查询就能立刻返回,听着挺美的。

    按道理,如果命中缓存的话,确实是能为查询加速的。但这个功能限制很大,其中最大的问题是只要数据库表被更新过,表里面的所有缓存都会失效,数据表频繁的更新,就会带来频繁的缓存失效。所以这个功能只适合用于那些不怎么更新的数据表。

    另外,这个功能在8.0版本之后,就被干掉了。所以这功能用来聊聊天可以,没必要真的在生产中使用啊。

    查询缓存被删除

    总结

    最后

    最近原创更文的阅读量稳步下跌,思前想后,夜里辗转反侧。

    我有个不成熟的请求。

    离开广东好长时间了,好久没人叫我靓仔了。

    大家可以在评论区里,叫我一靓仔吗?

    我这么善良质朴的愿望,能被满足吗?

    如果实在叫不出口的话,能帮我点下右下角的点赞和在看吗?

    【相关推荐:mysql视频教程

    以上就是mysql查询慢的因素除了索引,还有什么?的详细内容,更多请关注php中文网其它相关文章!

    声明:本文转载于:掘金社区,如有侵犯,请联系admin@php.cn删除
    专题推荐:数据库 mysql
    上一篇:一文掌握Mysql中的Enum数据类型 下一篇:MySQL的几种碎片整理方案
    VIP课程(WEB全栈开发)

    相关文章推荐

    • 【活动】充值PHP中文网VIP即送云服务器• MySql实例详解之怎么查出符合条件的最新的数据行• docker连接mysql报错2003怎么办• MySQL数据库JDBC编程知识点总结• MySQL学习之聊聊InnoDB中锁的情况• 浅析mysql设置最大连接数的两种方法
    1/1

    PHP中文网