• 技术文章 >头条

    吐血整理:索引失效的10种场景!

    藏色散人藏色散人2022-01-10 17:12:37转载229
    今天继续数据库的话题,更进一步聊聊索引的相关问题,因为索引是大家都比较关心的公共话题,确实有很多坑。

    不知道你在实际工作中,有没有遇到过下面的这两种情况:

    今天就跟大家一起聊聊,mysql数据库索引失效的10种场景,给曾经踩过坑,或者即将要踩坑的朋友们一个参考。图片

    0a470c9c389dc2d2703bc1afdcec5c1.png

    1. 准备工作

    所谓空口无凭,如果我直接把索引失效的这些场景丢出来,可能没有任何说服力。

    所以,我决定建表和造数据,给大家一步步演示效果,尽量做到有理有据。

    我相信,如果大家耐心的看完这篇文章,一定会有很多收获的。

    1.1 创建user表

    创建一张user表,表中包含:id、code、age、name和height字段。

    CREATE TABLE `user` (
      `id` int NOT NULL AUTO_INCREMENT,
      `code` varchar(20) COLLATE utf8mb4_bin DEFAULT NULL,
      `age` int DEFAULT '0',
      `name` varchar(30) COLLATE utf8mb4_bin DEFAULT NULL,
      `height` int DEFAULT '0',
      `address` varchar(30) COLLATE utf8mb4_bin DEFAULT NULL,
      PRIMARY KEY (`id`),
      KEY `idx_code_age_name` (`code`,`age`,`name`),
      KEY `idx_height` (`height`)
    ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin

    此外,还创建了三个索引:

    id:数据库的主键
    idx_code_age_name:由code、age和name三个字段组成的联合索引。
    idx_height:普通索引

    1.2 插入数据

    为了方便给大家做演示,我特意向user表中插入了3条数据:

    INSERT INTO sue.user (id, code, age, name, height) VALUES (1, '101', 21, '周星驰', 175,'香港');
    INSERT INTO sue.user (id, code, age, name, height) VALUES (2, '102', 18, '周杰伦', 173,'台湾');
    INSERT INTO sue.user (id, code, age, name, height) VALUES (3, '103', 23, '苏三', 174,'成都');

    周星驰和周杰伦是我偶像,在这里自恋了一次,把他们和我放到一起了。哈哈哈。

    1.3 查看数据库版本

    为了防止以后出现不必要的误会,在这里有必要查一下当前数据库的版本。不说版本就直接给结论,是耍流氓,哈哈哈。

    select version();

    查出当前的mysql版本号为:8.0.21

    1.4 查看执行计划

    在mysql中,如果你想查看某条sql语句是否使用了索引,或者已建好的索引是否失效,可以通过explain关键字,查看该sql语句的执行计划,来判断索引使用情况。

    例如:

    explain select * from user where id=1;

    执行结果:

    3a001c74d24098c8f72212041fc061b.png

    从图中可以看出,由于id字段是主键,该sql语句用到了主键索引。

    当然,如果你想更深入的了解explain关键字的用法,可以看看我的另一篇文章《explain | 索引优化的这把绝世好剑,你真的会用吗?》,里面更为详细的介绍。

    2. 不满足最左匹配原则

    之前我已经给code、age和name这3个字段建好联合索引:idx_code_age_name。

    该索引字段的顺序是:

    code
    age
    name

    如果在使用联合索引时,没注意最左前缀原则,很有可能导致索引失效喔,不信我们一起往下看。

    2.1 哪些情况索引有效?

    先看看哪些情况下,能走索引。

    explain select * from user
    where code='101';
    explain select * from user
    where code='101' and age=21 
    explain select * from user
    where code='101' and age=21 and name='周星驰';

    执行结果:

    b69cc2bc5515402de9459fb2ba7ea86.png

    上面三种情况,sql都能正常走索引。

    其实还有一种比较特殊的场景:

    explain select * from user
    where code = '101'  and name='周星驰';

    执行结果:

    905677e942f7f64fd237853d9ec7ced.png

    查询条件原本的顺序是:code、age、name,但这里只有code和name中间断层了,掉了age字段,这种情况也能走code字段上的索引。

    看到这里,不知道聪明的你,有没有发现这样一个规律:这4条sql中都有code字段,它是索引字段中的第一个字段,也就是最左边的字段。只要有这个字段在,该sql已经就能走索引。

    这就是我们所说的最左匹配原则。

    2.2 哪些情况索引失效?

    前面我已经介绍过,建立了联合索引后,在查询条件中有哪些情况索引是有效的。

    接下来,我们重点看看哪些情况下索引会失效。

    explain select * from user
    where age=21;
    explain select * from user
    where name='周星驰';
    explain select * from user
    where age=21 and name='周星驰';

    执行结果:

    572ac5af12fef5cff4954d948a9d9c1.png

    从图中看出这3种情况下索引确实失效了。

    说明以上3种情况不满足最左匹配原则,说白了是因为查询条件中,没有包含给定字段最左边的索引字段,即字段code。

    3. 使用了select *

    在《阿里巴巴开发手册》中明确说过,查询sql中禁止使用select * 。

    那么,你知道为什么吗?

    废话不多说,按照国际惯例先上一条sql:

    explain 
    select * from user where name='苏三';

    执行结果:

    7f3ad71136b19787bf3dd1eb80d41d5.png

    在该sql中用了select *,从执行结果看,走了全表扫描,没有用到任何索引,查询效率是非常低的。

    如果查询的时候,只查我们真正需要的列,而不查所有列,结果会怎么样?

    非常快速的将上面的sql改成只查了code和name列,太easy了:

    explain 
    select code,name from user 
    where name='苏三';

    执行结果:

    1b6d8a1eab1a13f2f86f08fd9a2d2e9.png

    从图中执行结果不难看出,该sql语句这次走了全索引扫描,比全表扫描效率更高。

    其实这里用到了:覆盖索引。

    如果select语句中的查询列,都是索引列,那么这些列被称为覆盖索引。这种情况下,查询的相关字段都能走索引,索引查询效率相对来说更高一些。

    而使用select *查询所有列的数据,大概率会查询非索引列的数据,非索引列不会走索引,查询效率非常低。

    4. 索引列上有计算

    介绍本章节内容前,先跟大家一起回顾一下,根据id查询数据的sql语句:

    explain select * from user where id=1;

    执行结果:

    6dc3653b071e7bf360e3a7e49593ec0.png

    从图中可以看出,由于id字段是主键,该sql语句用到了主键索引。

    但如果id列上面有计算,比如:

    explain select * from user where id+1=2;

    执行结果:

    1b6d8a1eab1a13f2f86f08fd9a2d2e9.png

    从上图中的执行结果,能够非常清楚的看出,该id字段的主键索引,在有计算的情况下失效了。

    5. 索引列用了函数

    有时候我们在某条sql语句的查询条件中,需要使用函数,比如:截取某个字段的长度。

    假如现在有个需求:想查出所有身高是17开头的人,如果sql语句写成这样:

    explain select * from user  where height=17;

    该sql语句确实用到了普通索引:

    8235e8385f21bf71dad05cfb09ed037.png

    但该sql语句肯定是有问题的,因为它只能查出身高正好等于17的,但对于174这种情况,它没办法查出来。

    为了满足上面的要求,我们需要把sql语句稍稍改造了一下:

    explain select * from user  where SUBSTR(height,1,2)=17;

    这时需要用到SUBSTR函数,用它截取了height字段的前面两位字符,从第一个字符开始。

    执行结果:

    f71df7c218a5aacd2484bfaef0a11cf.png

    你有没有发现,在使用该函数之后,该sql语句竟然走了全表扫描,索引失效了。

    6. 字段类型不同

    在sql语句中因为字段类型不同,而导致索引失效的问题,很容易遇到,可能是我们日常工作中最容易忽略的问题。

    到底怎么回事呢?

    请大家注意观察一下t_user表中的code字段,它是varchar字符类型的。

    在sql语句中查询数据时,查询条件我们可以写成这样:

    explain 
    select * from user where code="101";

    执行结果:

    4a3f24c35c7172cd4b00fbdfd33768e.png

    从上图中看到,该code字段走了索引。

    温馨提醒一下,查询字符字段时,用双引号“和单引号'都可以。

    但如果你在写sql时,不小心把引号弄掉了,把sql语句变成了:

    explain 
    select * from user where code=101;

    执行结果:

    bb4dbd08cf5b89a3aae2ad97ad86ad4.png

    你会惊奇的发现,该sql语句竟然变成了全表扫描。因为少写了引号,这种小小的失误,竟然让code字段上的索引失效了。

    这时你心里可能有一万个为什么,其中有一个肯定是:为什么索引会失效呢?

    答:因为code字段的类型是varchar,而传参的类型是int,两种类型不同。

    此外,还有一个有趣的现象,如果int类型的height字段,在查询时加了引号条件,却还可以走索引:

    explain select * from user 
    where height='175';

    执行结果:

    c08ae2e2181d699f0f366bf7f388f7d.png

    从图中看出该sql语句确实走了索引。int类型的参数,不管在查询时加没加引号,都能走索引。

    这是变魔术吗?这不科学呀。

    答:mysql发现如果是int类型字段作为查询条件时,它会自动将该字段的传参进行隐式转换,把字符串转换成int类型。

    mysql会把上面列子中的字符串175,转换成数字175,所以仍然能走索引。

    接下来,看一个更有趣的sql语句:

    select 1 + '1';

    它的执行结果是2,还是11呢?

    好吧,不卖关子了,直接公布答案执行结果是2。

    mysql自动把字符串1,转换成了int类型的1,然后变成了:1+1=2。

    但如果你确实想拼接字符串该怎么办?

    答:可以使用concat关键字。

    具体拼接sql如下:

    select concat(1,'1');

    接下来,关键问题来了:为什么字符串类型的字段,传入了int类型的参数时索引会失效呢?

    答:根据mysql官网上解释,字符串'1'、' 1 '、'1a'都能转换成int类型的1,也就是说可能会出现多个字符串,对应一个int类型参数的情况。那么,mysql怎么知道该把int类型的1转换成哪种字符串,用哪个索引快速查值?

    感兴趣的小伙伴可以再看看官方文档:https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html

    7. like左边包含%

    模糊查询,在我们日常的工作中,使用频率还是比较高的。

    比如现在有个需求:想查询姓李的同学有哪些?

    使用like语句可以很快的实现:

    select * from user where name like '李%';

    但如果like用的不好,就可能会出现性能问题,因为有时候它的索引会失效。

    不信,我们一起往下看。

    目前like查询主要有三种情况:

    like '%a'
    like 'a%'
    like '%a%'

    假如现在有个需求:想查出所有code是10开头的用户。

    这个需求太简单了吧,sql语句如下:

    explain select * from user
    where code like '10%';

    执行结果:

    21fdf8709b5a778021a4c3231fac7ce.png

    图中看出这种%在10右边时走了索引。

    而如果把需求改了:想出现出所有code是1结尾的用户。

    查询sql语句改为:

    explain select * from user
    where code like '%1';

    执行结果:

    3d6410d4d79f8bc766cbba1ab269ae5.png

    从图中看出这种%在1左边时,code字段上索引失效了,该sql变成了全表扫描。

    此外,如果出现以下sql:

    explain select * from user
    where code like '%1%';

    该sql语句的索引也会失效。

    下面用一句话总结一下规律:当like语句中的%,出现在查询条件的右边时,索引会失效。

    那么,为什么会出现这种现象呢?

    答:其实很好理解,索引就像字典中的目录。一般目录是按字母或者拼音从小到大,从左到右排序,是有顺序的。

    我们在查目录时,通常会先从左边第一个字母进行匹对,如果相同,再匹对左边第二个字母,如果再相同匹对其他的字母,以此类推。

    通过这种方式我们能快速锁定一个具体的目录,或者缩小目录的范围。

    但如果你硬要跟目录的设计反着来,先从字典目录右边匹配第一个字母,这画面你可以自行脑补一下,你眼中可能只剩下绝望了,哈哈。

    8. 列对比

    上面的内容都是常规需求,接下来,来点不一样的。

    假如我们现在有这样一个需求:过滤出表中某两列值相同的记录。比如user表中id字段和height字段,查询出这两个字段中值相同的记录。

    这个需求很简单,sql可以这样写:

    explain select * from user 
    where id=height

    执行结果:

    3d6410d4d79f8bc766cbba1ab269ae5.png

    意不意外,惊不惊喜?索引失效了。

    为什么会出现这种结果?

    id字段本身是有主键索引的,同时height字段也建了普通索引的,并且两个字段都是int类型,类型是一样的。

    但如果把两个单独建了索引的列,用来做列对比时索引会失效。

    感兴趣的朋友可以找我私聊。

    9. 使用or关键字

    我们平时在写查询sql时,使用or关键字的场景非常多,但如果你稍不注意,就可能让已有的索引失效。

    不信一起往下面看。

    某天你遇到这样一个需求:想查一下id=1或者height=175的用户。

    你三下五除二就把sql写好了:

    explain select * from user 
    where id=1 or height='175';

    执行结果:

    ea73680e27a5daeebb6a128017ca179.png

    没错,这次确实走了索引,恭喜被你蒙对了,因为刚好id和height字段都建了索引。

    但接下来的一个夜黑风高的晚上,需求改了:除了前面的查询条件之后,还想加一个address='成都'。

    这还不简单,sql走起:

    explain select * from user 
    where id=1 or height='175' or address='成都';

    执行结果:

    81dd77f5680e96736542ba4643d944e.png

    结果悲剧了,之前的索引都失效了。

    你可能一脸懵逼,为什么?我做了什么?

    答:因为你最后加的address字段没有加索引,从而导致其他字段的索引都失效了。

    注意:如果使用了or关键字,那么它前面和后面的字段都要加索引,不然所有的索引都会失效,这是一个大坑。

    10. not in和not exists

    在我们日常工作中用得也比较多的,还有范围查询,常见的有:

    in
    exists
    not in
    not exists
    between and

    今天重点聊聊前面四种。

    10.1 in关键字

    假如我们想查出height在某些范围之内的用户,这时sql语句可以这样写:

    explain select * from user
    where height in (173,174,175,176);

    执行结果:

    bf4e1c795280c175842786c22fd1529.png

    从图中可以看出,sql语句中用in关键字是走了索引的。

    10.2 exists关键字

    有时候使用in关键字时性能不好,这时就能用exists关键字优化sql了,该关键字能达到in关键字相同的效果:

    explain select * from user  t1
    where  exists (select 1 from user t2 where t2.height=173 and t1.id=t2.id)

    执行结果:

    c999a39a5d3a206e3be39086ac2adb7.png

    从图中可以看出,用exists关键字同样走了索引。

    10.3 not in关键字

    上面演示的两个例子是正向的范围,即在某些范围之内。

    那么反向的范围,即不在某些范围之内,能走索引不?

    话不多说,先看看使用not in的情况:

    explain select * from user
    where height not in (173,174,175,176);

    执行结果:

    6eaa2f4c55dac53cfbd5ceb2fbd40f8.png

    你没看错,索引失效了。

    看如果现在需求改了:想查一下id不等于1、2、3的用户有哪些,这时sql语句可以改成这样:

    explain select * from user
    where id  not in (173,174,175,176);

    执行结果:

    2b6dbf3c665549d47c3a1f3338ea288.png

    你可能会惊奇的发现,主键字段中使用not in关键字查询数据范围,任然可以走索引。而普通索引字段使用了not in关键字查询数据范围,索引会失效。

    10.4 not exists关键字

    除此之外,如果sql语句中使用not exists时,索引也会失效。具体sql语句如下:

    explain select * from user  t1
    where  not exists (select 1 from user t2 where t2.height=173 and t1.id=t2.id)

    执行结果:

    c1ac2e922e92d5c5f5814a6ca391b25.png

    从图中看出sql语句中使用not exists关键后,t1表走了全表扫描,并没有走索引。

    11. order by的坑

    在sql语句中,对查询结果进行排序是非常常见的需求,一般情况下我们用关键字:order by就能搞定。

    但我始终觉得order by挺难用的,它跟where或者limit关键字有很多千丝万缕的联系,一不小心就会出问题。

    Let go

    11.1 哪些情况走索引?

    首先当然要温柔一点,一起看看order by的哪些情况可以走索引。

    我之前说过,在code、age和name这3个字段上,已经建了联合索引:idx_code_age_name。

    11.1.1 满足最左匹配原则

    order by后面的条件,也要遵循联合索引的最左匹配原则。具体有以下sql:

    explain select * from user
    order by code limit 100;
    explain select * from user
    order by code,age limit 100;
    explain select * from user
    order by code,age,name limit 100;

    执行结果:

    5d11bbf9d405515eb4d12908663a60a.png

    从图中看出这3条sql都能够正常走索引。

    除了遵循最左匹配原则之外,有个非常关键的地方是,后面还是加了limit关键字,如果不加它索引会失效。

    11.1.2 配合where一起使用

    order by还能配合where一起遵循最左匹配原则。

    explain select * from user
    where code='101'
    order by age;

    执行结果:

    28cb26bd2173f3c4cbfc2db80215de4.png

    code是联合索引的第一个字段,在where中使用了,而age是联合索引的第二个字段,在order by中接着使用。

    假如中间断层了,sql语句变成这样,执行结果会是什么呢?

    explain select * from user
    where code='101'
    order by name;

    执行结果:

    b4e111e002b78aa4f36f73b42f5b0a2.png

    虽说name是联合索引的第三个字段,但根据最左匹配原则,该sql语句依然能走索引,因为最左边的第一个字段code,在where中使用了。只不过order by的时候,排序效率比较低,需要走一次filesort排序罢了。

    11.1.3 相同的排序

    order by后面如果包含了联合索引的多个排序字段,只要它们的排序规律是相同的(要么同时升序,要么同时降序),也可以走索引。

    具体sql如下:

    explain select * from user
    order by code desc,age desc limit 100;

    执行结果:

    297191afeabd19f7d97d7df58c0f309.png

    该示例中order by后面的code和age字段都用了降序,所以依然走了索引。

    11.1.4 两者都有

    如果某个联合索引字段,在where和order by中都有,结果会怎么样?

    explain select * from user
    where code='101'
    order by code, name;

    执行结果:

    567b0c8e46975c24823f0f820621830.png

    code字段在where和order by中都有,对于这种情况,从图中的结果看出,还是能走了索引的。

    11.2 哪些情况不走索引?

    前面介绍的都是正面的用法,是为了让大家更容易接受下面反面的用法。

    好了,接下来,重点聊聊order by的哪些情况下不走索引?

    11.2.1 没加where或limit

    如果order by语句中没有加where或limit关键字,该sql语句将不会走索引。

    explain select * from user
    order by code, name;

    执行结果:

    c3e391e8a3bbacc69e64f8b90bfcc55.png

    从图中看出索引真的失效了。

    11.2.2 对不同的索引做order by

    前面介绍的基本都是联合索引,这一个索引的情况。但如果对多个索引进行order by,结果会怎么样呢?

    explain select * from user
    order by code, height limit 100;

    执行结果:

    544a9a5811e44a6a974f08c5f92da76.png

    从图中看出索引也失效了。

    11.2.3 不满足最左匹配原则

    前面已经介绍过,order by如果满足最左匹配原则,还是会走索引。下面看看,不满足最左匹配原则的情况:

    explain select * from user
    order by name limit 100;

    执行结果:

    041d2a6e42e5c5e95164660393003cb.png

    name字段是联合索引的第三个字段,从图中看出如果order by不满足最左匹配原则,确实不会走索引。

    11.2.4 不同的排序

    前面已经介绍过,如果order by后面有一个联合索引的多个字段,它们具有相同排序规则,那么会走索引。

    但如果它们有不同的排序规则呢?

    explain select * from user
    order by code asc,age desc limit 100;

    执行结果:

    494b0f850f7f4835bc8b8143985f123.png

    从图中看出,尽管order by后面的code和age字段遵循了最左匹配原则,但由于一个字段是用的升序,另一个字段用的降序,最终会导致索引失效。

    好了今天分享的内容就先到这里,我们下期再见。

    声明:本文转载于:苏三呀,如有侵犯,请联系admin@php.cn删除
    专题推荐:索引失效
    上一篇:2022年首个稳定版:Chrome 97来了! 下一篇:再见AngularJS,欢迎Angular登场!

    相关文章推荐

    • 详细解析MySQL 8.x中新增了三种索引方式(总结分享)• mysql主键和索引的区别是什么• 完全掌握mysql的索引技巧(总结分享)• mysql索引失效的情况有哪些

    全部评论我要评论

  • 取消发布评论发送
  • 1/1

    PHP中文网