What is the difference between non-repeatable reads and phantom reads?
Difference: The focus of non-repeatable reading is modification; under the same conditions, the values read for the first and second times are different. The focus of phantom reading is adding or deleting; under the same conditions, the number of records read out for the first and second times is different. From a control perspective, non-repeatable reading only needs to lock records that meet the conditions, while phantom reading needs to lock records that meet the conditions and similar records.
The operating environment of this tutorial: windows7 system, mysql8 version, Dell G3 computer.
Refined explanation:
The focus of non-repeatable reading is to modify:
Same conditions , the data you have read, when you read it again, you find that the value is different
The focus of phantom reading is to add or delete
The same conditions, No. 1 The number of records read out twice and the second time are different
Of course, from the overall results, it seems that the results of the two reads are inconsistent.
But if you From a control point of view, the difference between the two is relatively large
For the former, only records that meet the conditions need to be locked
For the former The latter requires locking records that meet the conditions and those that are similar
Details:
1) "Not possible "Repeated reading" refers to reading the same data multiple times within a transaction. Before this transaction ends, another transaction also accesses the same data. Then, between the two reads of data in the first transaction, due to the modification of the second transaction, the data read twice by the first transaction may be different. In this way, the data read twice within a transaction is different, so it is called non-repeatable read. For example, an editor reads the same document twice, but between reads the author rewrites the document. When the editor reads the document a second time, the document has changed. Raw reads are not repeatable. This problem can be avoided if editors can only read the document after the author has finished writing.
To avoid this situation, you can usually use set tran isolation level repeatable read to set the isolation level, so that transaction A When reading the data in table T twice, if transaction B attempts to change the data in table T (the details are when transaction A reads the data), it will be blocked until transaction A commits! This ensures the consistency of the data read twice by transaction A.
2) Phantom reading refers to a phenomenon that occurs when transactions are not executed independently. For example, the first transaction modifies the data in a table, and this modification involves all data rows in the table. . At the same time, the second transaction also modifies the data in this table. This modification inserts a row of new data into the table. Then, in the future, the user who operates the first transaction will find that there are still unmodified data rows in the table, as if a hallucination has occurred. For example, an editor changes a document submitted by an author, but when production merges their changes into the master copy of the document, it is discovered that the author has added new, unedited material to the document. This problem can be avoided if no one can add new material to the document until the editors and production department have finished working on the original document.
Related free learning recommendations: mysql video tutorial
The above is the detailed content of What is the difference between non-repeatable reads and phantom reads?. For more information, please follow other related articles on the PHP Chinese website!

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
